首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the gradient-density functional theory, calculation results of methoxy adsorption on Au(111), Ag(111), Cu(111), Pt(111), Pd(111), Ni(111), Rh(111), and Fe(100) surfaces are presented, and a consistent picture for some key physical properties determining the reactivity of metals appears. These eight metals belong to two groups: either with filled d electrons (group IB) or with unfilled but more than half filled d electrons (group VIII). The calculated adsorption energies are quite in agreement with the experimental data as well as the previous theoretical calculation results. Importantly, using the analysis of B. Hammer and J. K. Norskov, Nature (London) 376, 232 (1995) and in Chemisorption and Reactivity on Supported Clusters and Thin Films, edited by R. M. Lambert and G. Pacchioni (Kluwer Academic, Dordrecht, 1997), pp. 285-351, the binding energies have selectively been linearly correlated to the d-band center and to the size of the metal d-band orbital overlapping with the adsorbate (coupling matrix element) for these two groups of metals. And by analyzing the nature of the adsorption bonding, the possible reason of this difference is suggested.  相似文献   

2.
The decomposition of methoxy on Cu(111), Ag(111), Au(111), Ni(111), Pt(111), Pd(111), and Rh(111) has been studied in detail by the density functional theory calculations. The calculated activation barriers were successfully correlated with the coupling matrix element V 2 ad and the d-band center (ε d ) for the group IB metals and group VIII metals, respectively. By comparison of the activation energy barriers of the methoxy decomposition on different metals, it was found that Pt is the best catalyst for methoxy decomposition. The possible reason why the metallic Pt is the best catalyst has been analyzed from both the energetic data and the electronic structure information, that is, methoxy decomposition on Pt(111) has the largest exothermic behavior due to the closest p-band center of the CH 3 O among all metals after the adsorption.  相似文献   

3.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

4.
The C-N bond cleavage for the relative large molecule of methylamine on Cu(1111), Ag(111), Au(111), Ni(111), Rh(111), Pd(111), Pt(111), and Mo(100) has been systemically studied using the DFT-GGA method; the reaction energy changes and the activation energies were obtained. The calculated results show that the activation energy of C-N bond cleavage decreases as the metal element goes up and to the left across the periodic table, which is in general agreement with the experimental observation. Moreover, it was found that the steric effect should be considered for the metals with high activity and small radius such as Ni, which is much different from the case for the small molecule decomposition in which the steric effect may be ignored. The linear relationships between the activation energies and electronic properties (d-band center) are presented. It is expected that such a rule can be used to predict the reactivity of metal for other dissociative adsorption systems.  相似文献   

5.
利用密度泛函理论系统研究了贵金属原子(Au、Pd、Pt和Rh)在CeO2(111)表面的吸附行为。结果表明,Au吸附在氧顶位最稳定,Pd、Pt倾向吸附于氧桥位,而Rh在洞位最稳定。当金属原子吸附在氧顶位时,吸附强度依次为Pt > Rh > Pd > Au。Pd、Pt与Rh吸附后在Ce 4f、O 2p电子峰间出现掺杂峰;Au未出现掺杂电子峰,其d电子峰与表面O 2p峰在-4~-1 eV重叠。态密度分析表明,Au吸附在氧顶位、Pd与Pt吸附在桥位、Rh吸附在洞位时,金属与CeO2(111)表面氧原子作用较强,这与Bader电荷分析结果相一致。  相似文献   

6.
The coverage dependence of oxygen adsorption energies on the fcc(111) surfaces of seven different transition metals (Rh, Ir, Pd, Pt, Cu, Au, and Ag) is demonstrated through density functional theory calculations on 20 configurations ranging from one to five adsorption sites and coverages up to 1 ML. Atom projected densities of states are used to demonstrate that the d-band mediated adsorption mechanism is responsible for the coverage dependence of the adsorption energies. This common bonding mechanism results in a linear correlation that relates the adsorption energies of each adsorbate configuration across different metal surfaces to each other. The slope of this correlation is shown to be related to the characteristics of the valence d-orbitals and band structure of the surface metal atoms. Additionally, it is shown that geometric similarity of the configurations is essential to observe the configurational correlations.  相似文献   

7.
The extraction of Pt, Pd, Ir, Rh, Ru, Ag, Au, Co, Cu, Ni and Fe with n-octylaniline has been investigated. Noble metals are extracted 10(3)-10(4) times better than Cu, Ni, Co and Fe. A method of determination of Pt, Pd, Ir, Rh and Ru is proposed. They are first separated from Cu, Ni, Co and Fe by means of extraction (and then determined, in either the aqueous or organic phase, by atomic-absorption spectrophotometry. The atomic absorption of platinum metals (with the exception of Pd) is affected by other elements of the platinum group and by non-noble metals. La(NO(3))(3) and Nd(NO(3))(3) lower the limit of detection for Pt, Rh, Ir and Ru and inhibit the effect of Co, Cu, Ni, Fe, Bi, Zn, Na, etc. on their determination. Lanthanum and neodymium chlorides and sulphates produce a similar effect but only on the determination of Pt and Rh. The coefficient of variation of the determination, in both phases, is within 2-6.8%.  相似文献   

8.
First principles density functional theory calculations have been performed for the chemisorption of formate adsorption on some metal surfaces. For the most stable adsorption site of short-bridge, the calculated formate adsorption energy follows the order of Au(110) < Ag(110) < Cu(110) < Pd(110) < Pt(110) < Ni(110) < Rh(110) < Fe(100) < Mo(100), and a clear linear correlation exists between the adsorption energy and the corresponding heat of formation of metal oxides. Moreover, it has been found that the fo...  相似文献   

9.
The chemisorption of NO on clean Pt(111), Rh/Pt(111) alloy, and Pd/Pt(111) alloy surfaces has been studied by first principles density functional theory (DFT) computations. It was found that the surface compositions of the surface alloys have very different effects on the adsorption of NO on Rh/Pt(111) versus that on Pd/Pt(111). This is due to the different bond strength between the two metals in each alloy system. A complex d-band center weighting model developed by authors in a previous study for SO2 adsorption is demonstrated to be necessary for quantifying NO adsorption on Pd/Pt(111). A strong linear relationship between the weighted positions of the d states of the surfaces and the molecular NO adsorption energies shows the closer the weighted d-band center is shifted to the Fermi energy level, the stronger the adsorption of NO will be. The consequences of this study for the optimized design of three-way automotive catalysts, (TWC) are also discussed.  相似文献   

10.
Periodic density functional theory calculations have been performed to investigate the chemisorption behavior of CO_2 molecule on a series of surface alloys that are built by dispersing individual middle-late transition metal(TM) atoms(TM = Fe, Co, Ni, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au) on the Cu(100) and Cu(111) surfaces. The most stable configurations of CO_2 chemisorbed on different TM/Cu surfaces are determined, and the results show that among the late transition metals, Co, Ru, and Os are potentially good dopants to enhance the chemisorption and activation of CO_2 on copper surfaces. To obtain a deep understanding of the adsorption property, the bonding characteristics of the adsorption bonds are carefully examined by the crystal orbital Hamilton population technique, which reveals that the TM atom primarily provides d orbitals with z-component, namely d_z~2, d_(xz), and d_(yz) orbitals to interact with the adsorbate.  相似文献   

11.
Adsorption of cyclohexene and its dehydrogenation intermediates on the nAu/Pt(100) (n = 0, 1, 2 means clean Pt, one monolayer and two layers of Au covered Pt surfaces, respectively.) has been investigated by self-consistent (GGA-PW91) density functional theory combined with periodic slab model. It is found that on the clean platinum, there are two kinds of favorable adsorption sites, i.e., hollow sites and bridge sites, and the adsorption energy at the hollow site is larger than that at the bridge site. However, on the Au/Pt and 2Au/Pt surfaces, there are three kinds of adsorption sites, and the adsorption energies are alike at both the bridge site and the top site. The magnitude order of the adsorption energies is as follows: clean Pt > Au/Pt > 2Au/Pt. The configurations of cyclohexene molecule have been distorted a little during the geometry optimizations. The lengths of C–M (M = Pt or Au, on the top layer of the slab) bonds are closely related to the corresponding adsorption energies.  相似文献   

12.
Recent experiments have established the generality of superabundant vacancies (SAV) formation in metal hydrides. Aiming to elucidate this intriguing phenomenon and to clarify previous interpretations, we employ density-functional theory to investigate atomic mechanisms of SAV formation in fcc hydrides of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. We have found that upon H insertion, vacancy formation energies reduce substantially. This is consistent with experimental suggestions. We demonstrate that the entropy effect, which has been proposed to explain SAV formation, is not the main cause. Instead, it is the drastic change of electronic structure induced by the H in the SAV hydrides, which is to a large extent responsible. Interesting trends in systems investigated are also found: ideal hydrides of 5d metals and noble metals are unstable compared to the corresponding pure metals, but the SAV hydrides are more stable than the corresponding ideal hydrides, whereas opposite results exist in the cases of Ni, Rh, and Pd. These trends of stabilities of the SAV hydrides are discussed in detail and a general understanding for SAV formation is provided. Finally, we propose an alternative reaction pathway to generate a SAV hydride from a metal alloy.  相似文献   

13.
1 INTRODUCTION The interfaces between metals and oxide play a vital role in many industrial applications: hetero- geneous catalysis, microelectronics, thermal barriers, corrosion protection, metal processing and so on[1]. In catalysis, the choice of metal and oxide support is critical in order to obtain a desired reactivity and selectivity[2]. This is due in part to the inherent reac- tivity of the two components. Also the size and shape of the metal particle, which depend on the choice…  相似文献   

14.
We have investigated the structure and electron transport at dichloroethylene-doped metal atomic junctions at low temperatures (20 K) in ultra-high vacuum, using Fe, Ni, Pd, Cu, Ag, and Au. The metal atomic junctions were fabricated using the mechanically controllable break junction technique. After introducing the dichloroethylene (DCE), the conductance behavior of Fe, Ni, and Pd junctions was considerably changed, whereas little change was observed for Cu, Ag, and Au. For the Pd and Cu junctions, a clear peak was observed in their conductance histograms, showing that the single-molecule junction was selectively formed. To investigate the structure of the metal atomic junctions further, their plateau lengths were analyzed. The length analysis revealed that the Au atomic wire was elongated, and the metal atomic wires were formed for the other transition metals: those that do not normally form metal atomic wires without DCE doping, as DCE adsorption stabilized the metal atomic states. There is a strong interaction between DCE and the metals, where DCE supports the formation of the metal atomic wire for Fe, Ni, and Pd.  相似文献   

15.
A density functional theory study of the intrinsic stability of pure and bimetallic wires is presented. Several bimetallic combinations forming one-atom thick wires are studied. An explanation for the experimental instability of Cu wires in contrast to the stability of Au and Ag wires is given, which relies on the higher surface energy of the former. All the possible intercalations between Ni, Pd, Pt, Cu, Ag, and Au are studied. The bimetallic wires AuCu and AuAg were found to be the most stable ones. The reactivity of the latter two systems is also examined using hydrogen adsorption as a microscopic probe. It was found that at the inter-metal interface, up to second neighbors, Cu and Ag become more reactive and Au becomes more inert than the corresponding pure wires. These results are explained within the d-band model.  相似文献   

16.
We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was correlated with their d-band centers, which were calculated using density functional theory (DFT). We found a volcano-type dependence of activity on the energy of the d-band center of Pd monolayers, with Pd/Pt(111) at the top of the curve. The activity of the non-Pt Pd2Co/C alloy electrocatalyst nanoparticles that we synthesized was comparable to that of commercial Pt-containing catalysts. The kinetics of the ORR on this electrocatalyst predominantly involves a four-electron step reduction with the first electron transfer being the rate-determining step. The downshift of the d-band center of the Pd "skin", which constitutes the alloy surface due to the strong surface segregation of Pd at elevated temperatures, determined its high ORR activity. Additionally, it showed very high methanol tolerance, retaining very high catalytic activity for the ORR at high concentrations of methanol. Provided its stability is satisfactory, this catalyst might possibly replace Pt in fuel-cell cathodes, especially those of direct methanol oxidation fuel cells (DMFCs).  相似文献   

17.
High-entropy alloys (HEAs) are near-equimolar alloys comprising five or more elements. In recent years, catalysis using HEAs has attracted considerable attention across various fields. Herein, we demonstrate the facile synthesis of nanoporous ultra-high-entropy alloys (np-UHEAs) with hierarchical porosity via dealloying. These np-UHEAs contain up to 14 elements, namely, Al, Ag, Au, Co, Cu, Fe, Ir, Mo, Ni, Pd, Pt, Rh, Ru, and Ti. Furthermore, they exhibit high catalytic activities and electrochemical stabilities in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic media, superior to that of commercial Pt/graphene and IrO2 catalysts. Our results offer valuable insights for the selection of elements as catalysts for various applications.

Nanoporous ultra-high-entropy alloys containing 14 elements (Al, Ag, Au, Co, Cu, Fe, Ir, Mo, Ni, Pd, Pt, Rh, Ru, and Ti) were obtained by dealloying. The products showed excellent electrocatalytic performance for water splitting in acidic media.  相似文献   

18.
This review covers almost two hundred and twenty heterobinuclear platinum compounds in which Pt?M separation is over 3.0 ?. The M is a transition metal (Cu, Ag, Au, Ti, V, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni and Pd). There is an example of a lanthanide, Yb and a actinide, U. The Pt atom has oxidation numbers 0, +2 and +4. The Pt coordination geometries include trigonal planar Pt(0); square planar Pt(II); trigonal bipyramidal, and pseudo octahedral Pt(IV), with the most frequent being square planar. The most common ligands for Pt are P and C donor atoms, as well as a chlorine atom. The Pt ?? Ag distance of 3.002(1) ? is the shortest found in this series. There are examples which contain two crystallographically independent molecules, which differ mostly by degree of distortion and even one unique example, which contains eight such molecules. These are examples of distortion isomerism. Factors affecting bond lengths and angles are discussed and some ambiguities in coordination polyhedral are outlined.  相似文献   

19.
C–C bond scission steps, which are often considered as rate-determining in ethane hydrogenolysis, are studied by the Unity Bond Index–Quadratic Exponential UBI–QEP method. The binding energies of atomic carbon with Group VIII and IB metal surfaces Ni(111), Pd(111), Pt(111), Rh(111), Ru(001), Ir(111), Fe(110), Cu(111), and Au(111) are estimated using experimental data on the adsorption of various species on these surfaces. These estimates are corrected using data from density functional theory (DFT) on the adsorption heats of the CH x species. Metal surfaces are arranged in the following series according to the binding strength of a carbon atom: Cu(111) < Au(111) < Pd(111) < Ru(001) Pt(111) < Ni(111) Rh(111) < Ir(111) < Fe(110). The values of chemisorption heats range from 121 kcal/mol for Au(111) to 193 kcal/mol for Fe(110). The activity of these surfaces toward C–C bond scission increases in the same series. The results of this work suggest that the most probable C–C bond scission precursors are ethyl, ethylidyne, adsorbed acetylene, CH2CH, CH2C, and CHC. Theoretical data obtained by different methods are compared and found to agree well with each other. An overview of experimental data on ethane hydrogenolysis mechanisms is given.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号