首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
新型聚芳醚腈酮超滤膜制备:非溶剂添加剂的影响   总被引:1,自引:0,他引:1  
以含二氮杂萘酮结构的聚芳醚腈酮(PPENK)为膜材料、N-甲基吡咯烷酮(NMP)为溶剂,系统地研究了五种有机非溶剂添加剂(NSA)正丁醇(BuOH)、乙二醇(EgOH)、乙醚(Ether)、乙二醇甲醚(EGME)和聚乙二醇400(PEG-400)在以水作为凝胶剂时对平板超滤膜性能的影响。浊点法滴定了PPENK/NMP/NSA体系的相图;并以邻近比口值来表征铸膜液组成靠近相分离的程度。结果表明:以水为凝胶剂制备的超滤膜,在以BuOH、EgOH、EGME和PEp400为添加剂时,随着口值的增加,平均孔径和水通量增加,截留率降低,膜结构均从指状结构向海绵状结构转变;以Ether为添加剂时,结果相反。通过改变添加剂的种类和含量,制备了不同孔径大小和通量的PPENK超滤膜。  相似文献   

2.
聚乙二醇对聚醚砜微孔膜致孔作用的研究   总被引:1,自引:0,他引:1  
以聚醚砜聚乙二醇溶剂为铸膜液体系、采用干湿相转化法制备微孔滤膜,研究了各种制膜条件对膜孔径结构的影响.实验发现聚乙二醇在体系中起到分散稳定的作用,只有到浓度大于70%时,才会对铸膜液的粘度产生明显影响,聚合物在铸膜液中的溶解状态也随之改变,进而影响膜的结构.不同溶剂NMP、DMF、DMAc、DMSO等极性溶剂或固体溶剂己内酰胺均可制得开孔率较高的微孔膜,但对膜的结构和性能影响差别不大.在本研究体系中,膜的结构取决于聚乙二醇、溶剂的浓度比例关系.  相似文献   

3.
低截留分子量PPES超滤膜的制备   总被引:1,自引:0,他引:1  
以杂萘联苯聚醚砜(PPES)为膜材料、N-甲基吡咯烷酮(NMP)为溶剂、有机小分子丙醇(PrOH)和无机小分子氯化锂(LiCl)作为混合添加剂,采用相转化法制备超滤膜.研究了聚合物浓度、混合添加剂配比、凝胶浴温度等对膜结构和性能的影响.结果表明:随聚合物浓度的增大,膜的纯水通量下降,截留率升高;混合添加剂,在PrOH含量为12%、LiCl含量为1.5%时,可制得纯水通量为252 L/(m2·h),对聚乙二醇1000(PEGl000)截留率为96%的超滤膜;随凝胶浴温度的升高,膜的纯水通量增加.  相似文献   

4.
PEU/PES共混膜的制备工艺条件研究   总被引:5,自引:0,他引:5  
利用L-S相转化法将聚醚型聚氨酯(PEU)和聚醚砜(PES)共混,以聚乙二醇(PEG)为添加剂,制备PEU/PES共混膜,并通过测定比较共混膜的结构与性能.结果表明:聚合物浓度、共混组成比、添加剂种类与浓度是影响PEU/PES共混膜性能的主要因素.  相似文献   

5.
干/湿相转换法制备聚芳醚砜致密皮层不对称膜   总被引:2,自引:0,他引:2  
以聚芳醚砜为膜材料,采用干/湿相转换法.在非挥发性溶剂-挥发性添加剂以及挥发性溶剂/共溶剂-弱挥发性添加剂两种溶剂体系中研究了致密皮层不对称膜的制备和形成条件,并对它们的结构及氮、氢气体透过性能进行了测试。结果表明,采用前一种溶剂体系。虽然可以在一定范围内控制膜平均孔径的变化,却难以得到致密皮层不对称膜。而后一种溶剂体系,在控制铸膜液组成、适当的制膜条件下可以得到具有海绵状支撑结构的不对称气体分离膜。  相似文献   

6.
成膜条件对聚醚砜超滤膜性能和结构的影响   总被引:4,自引:2,他引:2  
以聚醚砜(PES)为膜材,聚乙二醇600(PEG600)为添加剂,N,N-二甲基甲酰胺(DMF)为溶剂,纯水为凝固浴,用相转化法制备聚醚砜超滤膜.详细探讨了PES浓度、添加剂含量、凝固浴温度对膜性能和结构的影响规律,确定了制备高水通量、高截留率聚醚砜超滤膜的最佳工艺条件.  相似文献   

7.
为考察不同溶剂对聚醚砜酮(PPESK)炭膜结构和性能的影响,以PPESK为前驱体,分别以NMP,CHCl3,C2H2Cl4,DMAc为溶剂制备气体分离炭膜。并采用红外光谱、热重分析、X射线衍射和气体渗透等测试手段对所制膜的化学结构、炭膜的微结构和气体的分离性能进行了表征。结果表明,溶剂的溶度参数、沸点、挥发性以及原膜中溶剂的含量等导致所制备聚合物膜形成不同的化学结构,改变它在预氧化和炭化过程的结构变化规律,使形成炭膜表现出不同的炭结构、孔隙结构和表观柔韧性,最终影响炭膜的气体渗透性和分离选择性。  相似文献   

8.
含有聚醚链段的可溶性聚酰亚胺气体分离膜材料及其性能   总被引:1,自引:0,他引:1  
将4,4'-六氟亚异丙基-邻苯二甲酸酐(6FDA)和1,3-苯二胺(mPDA)与二端氨基聚醚缩聚, 得到含有聚醚柔性链段的聚酰亚胺气体分离膜材料. 所合成的共聚聚酰亚胺在N-甲基吡咯烷酮(NMP)和四氢呋喃(THF)等有机溶剂中具有良好的溶解性能. 研究了O2, N2, H2, CH4和CO2在聚酰亚胺均质膜中的渗透性能, 考察了二端氨基聚醚的含量、链长和化学结构对气体渗透性能的影响. 结果表明, 聚醚链段的引入增大了气体的扩散系数, 气体的渗透系数显著增大; 聚醚链段与CO2相对较强的相互作用, 增大了对CO2/N2的溶解选择性, CO2/N2的分离性能优于CO2/CH4, 同时CO2比H2优先透过膜.  相似文献   

9.
以含二氮杂萘酮结构的聚芳醚砜酮(PPESK)为制膜材料纺制了中空纤维气体分离膜,通过浊点滴定和线性浊点关联式(LCP关系式)计算,对PPESK三元纺丝液体系的相分离行为进行了研究,得到了PPESK三元纺丝液体系相图的相平衡曲线;并由PPESK/N,N-二甲基乙酰胺(DMAc)/γ-丁内酯(GBL)和PPESK/DMAc/丙酸(PA)体系相分离数据计算了PPESK的θ溶剂中GBL和PA与DMAc的比例.结果表明,在PPESK/DMAc/PA和PPESK/DMAc/H2O体系中,浊点滴定实验得到的相平衡曲线与依据LCP关系式计算得到的相平衡曲线吻合;体系热力学性质稳定的纺丝液体系易于制备出结构致密、选择性高的中空纤维气体分离膜;非溶剂添加剂(NSA)/DMAc混合溶剂的θ组成对膜性能有至关重要的影响,NSA/DMAc高于θ组成时,膜性能发生突变,NSA/DMAc低于θ组成时,制得的膜性能良好;力学性能测试表明PPESK中空纤维膜具有良好的机械强度.  相似文献   

10.
以壳聚糖荷正电改性的氧化石墨烯为无机添加剂,以聚醚砜为膜材料,聚乙烯吡咯烷酮为致孔剂,以N,N-二甲基乙酰胺为溶剂,采用相转化法制备了有机无机杂化纳滤膜.考察了不同改性氧化石墨烯添加量对膜分离性能的影响.研究结果表明,随着改性氧化石墨烯含量的增加,荷正电纳滤膜的断面形态结构并未发生明显改变,但杂化膜的纯水通量、分离选择性明显增加.从研究结果可以看出,改性氧化石墨烯的最佳添加质量分数在0.5%左右.  相似文献   

11.
The relationship among the presence of nonsolvent additives, the rheological behavior of spinning solutions and properties of hollow fiber membranes was studied. The additives tested were water, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), and the base mixture was polyethersulfone/N-methyl-2-pyrrolidone (PES–NMP). In addition the effect of combining water and PVP or PEG was also studied. Membranes were prepared using a spinneret having two concentric orifices. The internal coagulant used as well as the nonsolvent from the coagulation bath were both water at 28°C and 30°C, respectively. Rheological properties of polymer solutions were evaluated using a rheometer Haake RV 20. Changes on composition of spin-solutions were also evaluated in terms of membrane water permeability, solute rejection and membrane structure observed using scanning electron microscopy (SEM). Experimental results from this work showed that spinning solutions containing any of the three additives behave as Newtonian fluids in the range of shearing rates tested. The addition of water, PVP or PEG to the base PES–NMP solution increased its viscosity and this effect was independent of the type of additive used. A direct relation between viscosity of casting solutions and membrane thickness was found. However, rheological properties (viscosity and normal stress difference) could not be used to explain differences on membrane water flux (MWF) when using different additives at the same concentration. The addition of any of the three additives generally increased MWF. The extent of this increment seemed to be more related to changes on membrane porosity than changes on pore sizes induced by the nature and concentration of the additive used.  相似文献   

12.
利用浸沉凝胶相转化法制备医用聚氨酯(BPU)/聚乳酸(PLLA)微孔膜,讨论了BPU/PLLA不同配比时聚合物/1,4-二氧六环/水三元体系的凝胶特性及其对共混膜结构和性能的影响,并初步探讨成膜机理.研究结果表明,随着BPU/PLLA质量比例由90/10变为75/25、50/50、25/75、10/90,聚合物/溶剂/非溶剂三元体系的热力学稳定性增强,凝胶值增大,但是共混溶液的黏度增大;并且,共混膜的孔隙率、膜厚、平均孔径、水蒸汽透过速率及吸水率先增加后降低.这主要是由于随着BPU/PLLA质量比例的变化,动力学扩散过程控制成膜速度转变为成膜体系热力学性质控制成膜速度;成膜过程由延时分相转变为瞬时分相,后又转变为延时分相.  相似文献   

13.
Polyethersulfone membranes were prepared from quaternary systems containing N,N-dimethylacetamide (DMAc) as solvent, polyvinylpyrrolidone (PVP) as constant additive and acetic acid, acetone and water as variable additives. Phase inversion via immersion precipitation was employed for manufacturing of membranes. The prepared films were immersed in the mixture of pure water and 2-propanol (30/70 vol%) as the non-solvent. Acetic acid caused an increment in the flux at high polymer concentration (16 wt%) and a decline in the flux at low polymer concentrations (10 wt% and 13 wt%). Acetone and water as the solvent in the casting solution declined the flux at any polymer concentration tested. The morphology and performance of the prepared membranes were investigated by scanning electron microscopy and separation experiments using milk as the feed.  相似文献   

14.
The polymer/solvent/nonsolvent systems with different L-L demixing rates were prepared by employing a binary solvent mixture consisting of two solvents - one exhibits an instantaneous liquid-liquid (L-L) demixing process, while the other exhibits a delayed L-L demixing process. It was found that an increase in the delay time of L-L demixing results in a denser membrane structure, an increase in fiber mechanical strength, a delay desorption of moisture in membrane, and a decrease in gas permeance, for a hollow fiber fabrication system consisting of cellulose acetate (CA) (polymer), N-methyl-pyrrolidone (NMP) (solvent having an instantaneous L-L demixing property), tetrahydrofuran (THF) (solvent having a delayed L-L demixing property) and water (nonsolvent). Hollow fibers prepared under an instantaneous L-L demixing process tends to have more mechanically weak points (flaws) than those prepared under a delayed L-L demixing process. Surprisingly, SEM observation suggests that membranes wet-spun from solutions containing both THF and NMP tend to have a rough outer skin morphology. Inconsistent demixing and the collapse of the outer nascent skin may be the main causes. In addition, the effect of bore fluid chemistry on fiber performance is much more pronounced for systems having a delayed L-L demixing mechanism than that having an instantaneous L-L demixing.  相似文献   

15.
Ternary statistical copolymers composed of styrene, acrylo-nitrile, and methyl methacrylate were synthesized and frac-tionated by a precipitational method. For a given polymer concentration, the volume fraction of nonsolvent, i.e., methanol, at the precipitation point. γ, increases in the order: polystyrene > acrylonitrile-styrene and acrylonitrile-methyl methacrylate binary copolymers > ternary co-polymers. The γ values in methanol-dimethylformamide (DMF) mixture are larger than those in methanol-butanone, indicating that DMF is a better solvent for the terpolymer. A linear relation was obtained between the reciprocal limiting viscosity number and γ values of fractions. The dependence of γ on the terpolymer composition could not be established exactly in these systems. The temperature coefficient of γ, dγ/dT, increases with the MMA content and decreases with the styrene content in terpolymers both in butanone and in DMF mixtures.  相似文献   

16.
Poly(ether-block-amide) membranes were made via casting a solution on a nonsolvent (water) surface. In this research, effects of different parameters such as ratio of solvent mixture (n-butanol/isopropanol), temperature, composition of coagulation bath (water) and polymer concentration, on quality of the thin film membranes were studied. The mechanism of membrane formation involves solution spreading, solvent–nonsolvent exchange, and partial evaporation of the solvent steps. Solvent- nonsolvent exchange is the main step in membrane formation and determines membrane morphology. However, at higher temperature of polymeric solution greater portion of solvent evaporates. The results showed that type of demixing process (mutual affinity between solvent and nonsolvent) has important role in film formation. Also, addition of solvent to the nonsolvent bath is effective on membrane morphology. The film quality enhances with increasing isopropanol ratio in the solvent mixture. This behavior can be related to increasing of solution surface tension, reduction of interfacial tension between solution and nonsolvent and delayed solvent-nonsolvent demixing. Uniform films were made at a temperature rang of 60–80 °C and a polymer concentration of 4–7 wt%. Morphology of the membranes was investigated with scanning electron micrograph (SEM). Pervaporation of ethyl butyrate/water mixtures was studied using these membranes and high separation performance was achieved. For ethyl butyrate/water mixtures, It was observed that both permeation flux and separation factor increase with increasing ethyl butyrate content in the feed. Increasing temperature in limited range studied resulted in decreasing separation factor and increasing permeation flux.  相似文献   

17.
Simulations based on Cahn–Hilliard spinodal decomposition theory for phase separation in thermally quenched polymer/solvent/nonsolvent systems are presented. Two common membrane‐forming systems are studied, cellulose acetate [CA]/acetone/water, and poly(ethersulfone) [PES]/dimethylsulfoxide [DMSO]/water. The effects of initial polymer and nonsolvent composition on the structure‐formation dynamics are elucidated, and growth rates at specific points within the ternary phase diagram are quantified. Predicted pore growth rate curves exhibit a relative maximum with nonsolvent composition. For shallow quenches (lower nonsolvent content) near a phase boundary, the pore growth rate increases with increasing quench depth, whereas for deep quenches, where the composition of the polymer‐rich phase approaches that of a glass, the pore growth rate decreases with increasing quench depth. With increasing initial polymer concentration, the overall rate of structure growth is lowered and the growth rate maximum shifts to higher nonsolvent compositions. This behavior appears to be a universal phenomenon in quenched polymer solutions which can undergo a glass transition, and is a result of an interplay between thermodynamic and kinetic driving forces. These results suggest a mechanism for the locking‐in of the two‐phase structure that occurs during nonsolvent‐induced phase inversion. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1449–1460, 1999  相似文献   

18.
The various types of porous membranes were prepared by dry-cast process in several cellulose acetate/acetone/nonsolvent systems. The nonsolvents used were 2-methyl-2,4-pentanediol, hexanol and octanol. Because of the high boiling points of the nonsolvents used in this work, only the solvent (acetone) evaporated during the membrane formation. The effects of the nonsolvent weight fraction in the cast solution, the polymer weight fraction, membrane thickness and kinds of the nonsolvents on the membrane structures were studied. As the nonsolvent weight fraction increased, the membrane morphology changed in the order of entirely dense, asymmetric and entirely porous structures. The increase in the polymer weight fraction and the decrease in the membrane thickness suppressed the asymmetric structures. These kinds of nonsolvents significantly influenced the membrane morphology.In order to understand the change of the obtained membrane structures, the phase diagrams for ternary systems were clarified experimentally and theoretically. Moreover, the mass transfer process was analyzed and the changes in the polymer volume fractions during the membrane formation were simulated. Based on both these thermodynamic and kinetic properties, the membrane structures obtained were discussed in detail. The asymmetrc structures obtained in this work were found to be attributable to the kinetic difference in the increase rates of the polymer fractions across the binodal line.  相似文献   

19.
Ultrafiltration membranes were prepared using phenolphthalein polyarylethersulfone (PES-C),polyethersulfone (PES) and poly(phthalazinone ether sulfone ketone) (PPESK) as polymers and NMP,DMAc,DMF and DMSO as solvents by immersion precipitation via phase inversion.Experimental data of thermodynamic properties of the polymer solutions and kinetic process of membrane formation were reported.For polymer solutions with good solvents,the sequence of the viscous flow activation energy (E_η) was coincident with ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号