首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size distribution after addition of oleate surfactant to preformed Egg yolk phosphatidylcholine (EggPC) vesicles was investigated by gel filtration chromatography combining with dynamic light scattering. Phospholipid and oleate concentration, fluorescence intensity and size of the vesicles were measured for each elution fraction. The spontaneous vesiculation of oleate at pH 8.5 was accelerated in the presence of preformed EggPC vesicles. The size distribution of newly formed vesicles was dependent on the preformed vesicular size. For example, oleate addition to large preformed vesicles (230 nm) resulted in altering of vesicles to both larger and smaller than preformed ones, while addition of oleate to small preformed vesicles (50 nm) led to the formation of only larger vesicles without exhibition of newly small vesicles. The combinations of gel filtration chromatography and dynamic light scattering could provide more detailed insight into the size change of newly formed vesicles.  相似文献   

2.
An addition of oleate micellar solution to two original sizes (180 nm and 50 nm) of preformed vesicles was studied using gel exclusion chromatography, dynamic light scattering and freeze fracture electron microscopy. The effect of molar ratios of phospholipid and oleate on size distribution of newly formed vesicles was investigated by varying molar concentrations of these two components. After adding an equiamount of oleate to 180 nm-preformed vesicles or 50 nm-preformed vesicles, a relatively monodisperse population of newly formed vesicles was detected. For the high amount of oleate addition to two original sizes of preformed vesicles, the results were quite different. New large vesicles and a number of new small vesicles were observed in samples of mixed EggPC/oleate suspension in the presence of preformed vesicles with 180 nm of size, whereas, only some new large vesicles were detected in samples of mixed EggPC/oleate suspension in the presence of preformed vesicles with 50 nm of size. We assumed that the number of new small vesicles, with size close to preformed vesicles, increased in the latter case. The transformation of mixed EggPC/oleate micelles to mixed vesicles was investigated. The results showed that transformation of mixed EggPC/oleate micelles to vesicles was remarkably faster than transformation of mere oleate micelles to vesicles. The above findings suggested that new mixed EggPC/oleate vesicles with small size were presumably formed by partial solubilization.  相似文献   

3.
油酸囊泡层状液晶作为模板电化学合成银纳米颗粒   总被引:5,自引:0,他引:5  
在油酸囊泡的层状液晶中利用电化学沉积法成功地制备了银纳米颗粒。并用扫描隧道显微镜(STM)和透射电子显微镜(TEM)对银纳米颗粒进行了表征,发现银纳米颗粒能够均匀地分散在油酸囊泡中,并且油酸囊泡能够有效地阻止产生的银纳米颗粒发生聚集反应。此外,我们还提出了银纳米颗粒形成的机理。  相似文献   

4.
A method is presented to enhance the efficiency of simulations of lipid vesicles. The method increases computational speed by eliminating water molecules that either surround the vesicle or reside in the interior of the vesicle, without altering the properties of the water at the membrane interface. Specifically, mean field force approximation (MFFA) boundary potentials are used to replace both the internal and external excess bulk solvent. In addition to reducing the cost of simulating preformed vesicles, the molding effect of the boundary potentials also enhances the formation and equilibration of vesicles from random solutions of lipid in water. Vesicles with diameters in the range from 20 to 60 nm were obtained on a nanosecond time scale, without any noticeable effect of the boundary potentials on their structure.  相似文献   

5.
Ca(2+)- and Ba(2+)-coordinated vesicle phases were prepared in mixed aqueous solutions of tetradecyldimethylamine oxide (C(14)DMAO) and calcium oleate (Ca(OA)(2)) or barium oleate (Ba(OA)(2)). At the right mixing ratios, metal-ligand coordination between Ca(OA)(2) or Ba(OA)(2) and C(14)DMAO results in the formation of molecular bilayers due to the reduction in area per head group. Ca(2+) and Ba(2+) tightly associate to the head groups of surfactants and in this system the bilayer membranes are not shielded by excess salts. The structures of the birefringent samples of the Ca(OA)(2)/C(14)DMAO/H(2)O and Ba(OA)(2)/C(14)DMAO/H(2)O systems were determined by freeze-fracture transmission electron microscopy (FF-TEM), small-angle X-ray scattering (SAXS), and rheological measurements to consist of unilamellar, multilamellar, and oligovesicular vesicles. The coordination between C(14)DMAO and Ba(OA)(2) or Ca(OA)(2) plays an important role in the formation of the vesicles, which was easily confirmed by studying the phase behavior of the KOA/C(14)DMAO/H(2)O system in which only the L(1) phase forms, due to the absence of coordination between KOA and C(14)DMAO. A mechanism is proposed that accounts for the formation of these new metal-ligand coordinated vesicles.  相似文献   

6.
This paper introduces a novel approach to controlling membrane permeability in free unilamellar vesicles using shearing in the presence of a detergent with a large head-group to tune pore formation. Such shear-induced permeation could offer a simple means of postencapsulating bioactive molecules to prepare vesicle vectors for drug delivery. Using UV absorption, fluorescence emission, dynamic light scattering, and electron microscopy, we investigated the membrane permeability and the morphology of unilamellar lipid vesicles (diameter in the range 50-400 nm) subjected to a shear stress in the presence of a small amount of nonionic surfactant (Brij 76). Shear-induced leakage and fusion events were observed. We analyzed the significance of the vesicle size, the shear rate, and the surfactant-to-lipid ratio for the observed phenomena. The present approach is evaluated for postloading of preformed vesicles.  相似文献   

7.
The macroscopic appearance and microstructure in the dilute corner of the ternary monoolein (MO)-sodium oleate (NaO)-water (2H2O) system have been investigated by visual inspection and by using direct structural imaging with light microscopy and cryogenic transmission electron microscopy. The microstructural transformations that take place between the micellar phase (binary NaO2H2O axis) and the dispersed cubic phase (binary MO2H2O axis) upon increasing the ratio of MO to NaO are micelles, ruptured multilamellar vesicles together with flexible threads, various vesicle structures, vesicles in equilibrium with densely packed layers that either represent bilayers or domains of H(II) tubes visible from the side, and finally a pattern that may be either a cubic phase or domains of H(II) tubes visible in a cross section. Spontaneously formed uni- and multilamellar vesicles that show long-term stability are found to be the dominant structure for mixed dispersions over almost the entire concentration range. The addition of NaOH to the non-bilayer-forming system, the ternary MOOA (oleic acid)-2H2O system, leads to the formation of vesicles. Vesicles were also observed in other ternary MO-aqueous-based systems with potassium oleate, cetyltrimethylammonium bromide, sodium taurodeoxycholate, or dipalmitoylphosphatidylcholine instead of NaO.  相似文献   

8.
A spontaneously forming gel of unilamellar vesicles based on sodium oleate (Na oleate) and 1-octanol as amphiphiles has been employed as a template in the formation of a silica gel formed by the hydrolysis of the inorganic precursor tetraethyl orthosilicate (TEOS). Up to about 10 wt % TEOS can be incorporated into this vesicle gel without phase separation and in a fully homogeneous formation process by simple mixing of the components. The process itself relies solely upon the self-organizing properties of this amphiphilic template system. The formation process was followed by means of time-resolved turbidity, rheology, and small-angle neutron scattering (SANS) experiments. It can be concluded that the presence of the precursor TEOS affects the kinetics of the process but the original vesicle gel structure is retained even up to highest TEOS content. The kinetic studies confirm that under the chosen conditions the vesicle formation proceeds much faster than the hydrolysis of TEOS and the subsequent formation of the silica gel. SANS displays in the low q-range an additional scattering due to the silica gel network, i.e., a hybrid material of an amphiphilic vesicle gel and an inorganic oxide gel is formed. Thus, this method is a very facile novel route of forming a highly ordered silica/vesicle gel by employing a self-organizing amphiphilic system as template and the formation of the silica network proceeds in a fully homogeneous fashion under kinetic control.  相似文献   

9.
Abstract— Phospholipid vesicles of saturated and unsaturated phosphatidylcholines have been prepared with phenanthrenequinone incorporated into the hydrocarbon region of the lipid bilayer. Blue or ultraviolet light exposure of these vesicles causes a loss of quinone absorbance and the corresponding formation of new absorbance bands due to addition products. In vesicles composed of unsaturated phospholipids, cycloaddition is preferred over R-H addition. The quantum yield for quinone disappearance is -0.25 in vesicles which contain unsaturated phospholipids and decreases to 0.08 when the photolysis is conducted below the lipid characteristic temperature.  相似文献   

10.
RNA and vesicles are two important molecular classes in the origin of life and early evolution, but they are not generally considered as interacting partners. The present paper reports about the interaction between tRNA (Esherichia coli) and vesicles made of the zwitterionic surfactant POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), partially positively charged with small molar fractions (max 10%) of the single-chained CTAB (cetyltrimethylammonium bromide). CTAB is capable to insert efficiently in POPC vesicles (as determined by zeta-potential measurements), and the binding of tRNA to such charged vesicles operates a strong selection being critically dependent upon the vesicle size. The binding of tRNA to the vesicles is size-selective as it induces a strongly pronounced process of aggregation of large vesicles (ca. 160-nm diameter) but not of small ones (ca. 80-nm diameter) that are stable against vesicle aggregation (as followed by dynamic light-scattering and optical density measurements). The aggregation of the large vesicles is fully reversible upon the addition of RNase A. The selective behavior of tRNA with respect to differently sized vesicles is observable in separated samples as well as in a mixture of both populations. In the latter case, the fraction of large vesicles readily aggregates in the presence of the small ones that remain unaltered in the mixture. This kind of discrimination capability of RNA might have been of importance in the early phases of the formation of the protocells.  相似文献   

11.
When 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) was removed from the mixed CHAPS/EggPC micelles, large vesicles were prepared by dialysis or by slow step-by-step dilution, but small vesicles were prepared by fast one-step dilution. When sodium cholate was removed from the sodium cholate/EggPC micelles, small vesicles formed either by dialysis or by dilution; however, in the presence of 5 mM Ca2+ large vesicles were produced by dialysis, while small vesicles were prepared by dilution. The size growth was related to a detergent-induced fusion of the vesicles containing a large amount of detergent. Using spectrophotometry, quasielastic light scattering and freeze–fracture electron microscopy the fusion events were investigated both through the process of vesicle solubilization by adding detergent and through the process of vesicle formation by diluting a mixed micelle. The results suggest that a rapid CHAPS-induced fusion of the vesicles led to the large resultant vesicles and that no fusion of vesicles containing sodium cholate is responsible for the formation of small vesicles. Furthermore, the ultimate vesicle size related to rapid or slow detergent removal is dependent on the kinetic aspects of the fusion. Received: 19 August 1999 Accepted: 18 February 2000  相似文献   

12.
The formation of cadmium sulfide (CdS) particles in the gaps between the layers of the multilamellar vesicles is described, introducing a new pathway in the preparation of nanometer-scale particles. The in situ structural characterization of both the CdS particles and the vesicles as a reaction medium was performed in the early and final states of the process by using anomalous small-angle X-ray scattering (ASAXS) and freeze-fracture methods. The ASAXS method provides the separation of the scattering of nanoparticles present in a small amount, whereby the monitoring of their formation and growth in the whole time range of manufacturing has become possible.  相似文献   

13.
Cobalt‐mediated radical coupling (CMRC) is a straightforward approach to the synthesis of symmetrical macromolecules that relies on the addition of 1,3‐diene compounds onto polymer precursors preformed by cobalt‐mediated radical polymerization (CMRP). Mechanistic features that make this process so efficient for radical polymer coupling are reported here. The mechanism was established on the basis of NMR spectroscopy and MALDI‐MS analyses of the coupling product and corroborated by DFT calculations. A key feature of CMRC is the preferential insertion of two diene units in the middle of the chain of the coupling product mainly according to a trans‐1,4‐addition pathway. The large tolerance of CMRC towards the diene structure is demonstrated and the impact of this new coupling method on macromolecular engineering is discussed, especially for midchain functionalization of polymers. It is worth noting that the interest in CMRC goes beyond the field of polymer chemistry, since it constitutes a novel carbon–carbon bond formation method that could be applied to small organic molecules.  相似文献   

14.
Spontaneous formation of vesicles   总被引:1,自引:0,他引:1  
his review highlights the relevant issues of spontaneous formation of vesicles. Both the common characteristics and the differences between liposomes and vesicles are given. The basic concept of the molecular packing parameter as a precondition of vesicles formation is discussed in terms of geometrical factors, including the volume and critical length of the amphiphile hydrocarbon chain. According to theoretical considerations, the formation of vesicles occurs in the systems with packing parameters between 1/2 and 1. Using common as well as new methods of vesicle preparation, a variety of structures is described, and their nomenclature is given. With respect to sizes, shapes and inner structures, vesicles structures can be formed as a result of self-organisation of curved bilayers into unilamellar and multilamellar closed soft particles. Small, large and giant uni-, oligo-, or multilamellar vesicles can be distinguished. Techniques for determination of the structure and properties of vesicles are described as visual observations by optical and electron microscopy as well as the scattering techniques, notably dynamic light scattering, small angle X-ray and neutron scattering. Some theoretical aspects are described in short, viz., the scattering and the inverse scattering problem, angular and time dependence of the scattering intensity, the principles of indirect Fourier transformation, and the determination of electron density of the system by deconvolution of p(r) function. Spontaneous formation of vesicles was mainly investigated in catanionic mixtures. A number of references are given in the review.  相似文献   

15.
A microchemical system for ethenolysis of renewable methyl oleate was developed, in which the dual-phase, microfluidic design enabled efficient diffusion of ethylene gas into liquid methyl oleate through an increased contact area. The increased mass transfer of ethylene favored the formation of desired commodity chemicals with significantly suppressed homometathesis when compared to the bulk system. In addition to higher selectivity and conversion, this system also provides the typical advantages of a microchemical system, including the possibility of convenient scale-up.  相似文献   

16.
We present a detailed AFM study on multilayered dry lipid films prepared from aqueous vesicle suspensions. Different preparation techniques were applied in order to optimize the preparation of homogeneous lipid films of various film thicknesses. Suspensions of preformed DOPC/DPPC vesicles were adsorbed onto indium tin oxide-coated glass coverslips, a substrate also commonly employed for the formation of giant liposomes. We found that the homogeneity of the lipid films could substantially be improved when applying a spin-coating step during the film preparation. These films were much more homogeneous than those prepared by conventional drop-casting and in addition the film thickness could be controlled. When using a combination of vesicle adsorption and spin-coating the quality and thickness of the films depended crucially on the lipid concentration of the vesicle suspension, the adsorption temperature and the adsorption time. For lipid films prepared by direct spin-coating the lipid concentration and the applied spin-coating sequence were critical parameters for the quality and thickness of the deposited lipid films.  相似文献   

17.
A new method for determining the size of critical nucleus of fibril formation of polypeptide chains is proposed. Based on the hypothesis that the fibril grows by addition of a nascent peptide to the preformed template, the nucleus size N(c) is defined as the number of forming template peptides above which the time to add a new monomer becomes independent of the template size. Using lattice models one can show that our method and the standard method which is based on calculation of the free energy, provide the same result for N(c).  相似文献   

18.
A novel technique called the "lipid-coated ice droplet hydration method" is presented for the preparation of giant vesicles with a controlled size between 4 and 20 microm and entrapment yields for water-soluble molecules of up to about 30%. The method consists of three main steps. In the first step, a monodisperse water-in-oil emulsion with a predetermined average droplet diameter between 4 and 20 microm is prepared by microchannel emulsification, using sorbitan monooleate (Span 80) and stearylamine as emulsifiers and hexane as oil. In the second step, the water droplets of the emulsion are frozen and separated from the supernatant hexane solution by precipitation, followed by a removal of the supernatant and followed by the replacement of Span 80 by using a hexane solution containing egg yolk phosphatidylcholine, cholesterol, and stearylamine (5:5:1, molar ratio). This procedure is performed at -10 degrees C to keep the water droplets of the emulsion in a frozen state and thereby to avoid extensive water droplet coalescence. In the third step, hexane is evaporated at -4 to -7 degrees C and an external water phase is added to the remaining mixture of lipids and water droplets to form giant vesicles that have an average size in the range of that of the initial emulsion droplets (4-20 microm). The entrapment yield and the lamellarity of the vesicles obtained depend on the lipid/water droplet ratio and on the composition of the external water phase. At high lipid/water droplet ratio, the giant vesicles have a thicker membrane (indicating multilamellarity) and a higher entrapment yield than in the case of a low lipid/water droplet ratio. The highest entrapment yield ( approximately 35%) is obtained if the added external water phase contains preformed unilamellar egg phosphatidylcholine vesicles with an average diameter of 50 nm. The addition of these small vesicles minimizes the water droplet coalescence during the third step of the vesicle preparation, thereby decreasing the extent of release of water-soluble molecules originally present in the water droplets. The GVs prepared can be extruded through polycarbonate membranes to yield large unilamellar vesicles with about 100 nm diameter. This size reduction, however, leads to a decrease in the entrapment yield to about 12% due to solute leakage from the vesicles during the extrusion process.  相似文献   

19.
Abstract— The water soluble, photolabile nitrene precursor,azidonaphthalene–2,7-disulfonic acid (ANDS) was encapsulated in small unilamellar, isoelectric (egg PC) or negatively charged (egg PC + dihexadecylphosphate) liposomes. The individual and combined effects of heme-proteins and UV irradiation on the fluorescence of these vesicles under aerobic conditions were studied. Consistent with the catalytic action of heme-proteins on lipid peroxidation and peroxide decomposition, addition of cytochrome c (positively charged) or catalase (negatively charged) to the vesicles elicited immediate formation of a fluorescence band at 470 nm, characteristic of Schiff bases that form from aldehyde byproducts of decomposing hydroperoxides. Ultraviolet irradiation of liposomes for 5 min caused no significant changes in the fluorescence spectrum, in spite of the radiolysis of ANDS inside the vesicles with consequent formation of nitrene radicals. When isoelectric vesicles were irradiated with UV light in the presence of cytochrome c or catalase, Schiff base formation was further increased by2–3 fold, which effect was not observed in the absence of internal ANDS, or in the presence of negative surface charge on the vesicles. These findings suggest that (a) UV irradiation, by itself, cannot trigger lipid decomposition even when it is assisted by photoproduced nitrene radicals, (b) there is a ternary synergism between UV light, heme-proteins and nitrene radicals in promoting peroxidative lipid breakdown, and (c) negative surface charge inhibits the above synergism, which effect is unlikely to be due to electrostatic interaction between the vesicles and the protein or the ANDS.  相似文献   

20.
Colloidal small‐size CdS quantum dots (QDs) are produced usually with low particle yield, together with side products such as the particular precursor compounds (PCs) of magic‐size clusters (MSC). Here, we report our synthesis of small‐size CdS QDs without the coexistence of the PC and thus with enhanced particle yield. For a conventional reaction of cadmium oleate (Cd(OA)2) and sulfur (S) in 1‐octadecene (ODE), we show that after the formation of the PC in the pre‐nucleation stage, the addition of tri‐n‐octylphosphine oxide (TOPO) facilitates the production of small‐size QDs. We demonstrate that TOPO fragmentizes the PC that have formed, which enables the nucleation and growth of small‐size QDs even at room temperature. Our findings introduce a new approach to making small‐size QDs without the coexistence of the PC and with improved particle yield. Providing experimental evidence for the two‐pathway model proposed for the pre‐nucleation stage of colloidal binary QDs, the present study aids in the advance of non‐classical nucleation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号