首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffusion flux to a distorted gas bubble situated in a uniform viscous incompressible fluid flow is determined for large Reynolds and Péclet numbers and finite Weber numbers. The bubble has the shape of an ellipsoid of revolution, oblate in the flow direction, making it possible to use the flow field derived by Moore [1] in the form of a two-term expansion with respect to the flow parameter =R–1/2 (R is the Reynolds number; the zeroth term of the expansion corresponds to potential flow). The dependence of the diffusion flux onto the bubble surface on the Weber and Reynolds numbers is determined. The results of Winnikow [2] and Sy and Lightfoot [3] are thus generalized to the case of finite Weber numbers and a broader range of Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 70–76, July–August, 1976.  相似文献   

2.
3.
The mechanism of shape instability of a bubble moving at low Reynolds numbers is analyzed by theoretical and experimental studies of axisymmetric perturbations of the spherical interface. It is shown that, under such conditions, deformation of the initially spherical bubble is due to the development of Rayleigh-Taylor instability upon reaching a critical Bond number.  相似文献   

4.
When particles are submerged in a shear flow, there are lateral (lift) forces on the particles, and these lateral forces affect the dispersion of the particles very much. Recent literature survey indicates that there are large discrepancies among the results from the previous numerical investigations on this subject. A small computational domain ranging between 20–30 sphere radii was used in all the previous numerical investigations. However, the result from the present study reveals that the value of lift coefficient strongly depends on the size of computational domain. To provide correct numerical data and physical interpretation for the forces on a spherical particle in linear shear flow, accurate numerical computations were performed for 5≤Re≤200 using a computational domain of 101 sphere radii.  相似文献   

5.
At present, there is an absence of the accurate data on the influence of the shape of a droplet on its hydrodynamic drag and mass transfer without which the design of mass transfer apparatus is impossible [1–3]. Most often it is assumed that the drag of an ellipsoidal liquid droplet as it moves along the axis of symmetry is determined by the product of the drag of a spherical liquid droplet and a coefficient which takes into account the shape and is determined from the drag of a solid ellipsoid for which the exact solutions are known. It is shown below that this assumption is not always valid.Translated from Tzvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 4–8, May–June, 1987.  相似文献   

6.
The motion of a medium consisting of neutral particles and charged particles of single sign is studied under the assumption that the electric Reynolds number (Rq=u/bE) is large. We calculate the freezingin integral and the Bernoulli and Cauchy-Lagrange integrals, study the fluid motion in a stream tube, and formulate the boundary layer problem.  相似文献   

7.
8.
The interaction of a bubble and a vortex ring at high Reynolds numbers could be considered a simplified model of the interaction of a bubble and a turbulent structure of similar size, with the possible subsequent bubble breakup. In this paper, some results from axisymmetric and 3D simulations of the interaction of a bubble and a vortex ring at high Reynolds numbers are presented for different values of the Weber number and vortex ring sizes. Some bubble breakup patterns that could not be obtained by previous axisymmetric boundary integral models are shown. Results obtained are discussed into the framework of the classical Kolgomorov–Hinze theory on bubble breakup and some recent experimental investigations.  相似文献   

9.
The problem of the axisymmetric motion of a fluid between infinite disks is solved by the method of matched asymptotic expansions without introducing model assumptions. For the strongly nonlinear stage of spin-down solutions are found that correspond to initial states different from rigid-body rotation, when the boundary layer is not a Kármán layer. The experimental results obtained are in qualitative and quantitative agreement with the theory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 39–46, May–June, 1986.The authors wish to thank A. M. Obukhov and F. V. Dolzhanskii for formulating the problem and for constructive discussion.  相似文献   

10.
The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic optimization. In this letter, the solution of unsteady adjoint equations is accelerated by dynamic mode decomposition(DMD). The pseudo-time marching of every real-time step is approximated as an infinite-dimensional linear dynamical system. Thereafter, DMD is utilized to analyze the adjoint vectors sampled from these pseudo-time marching. First-order zero frequency mode is selected to accelera...  相似文献   

11.
The capability of a mixture of okra fiber and mucilage as drag reducer in high Reynolds number flows through a pipeline, in which the flux is maintained by a centrifugal pump with controlled rotation, is analyzed. A DR close to the maximum drag reduction asymptote, which is obtained for polymeric additives, was achieved when concentrations around 1600 ppm were used. The loss of efficiency of the solution over the number of passes through the system was almost the same of that observed for rigid materials like Xanthan Gum and Guar Gum, which suggest that the main cause of a decreasing drag reduction is the de-aggregation instead of mechanical degradation, commonly observed in flexible polymers. As expected, the material degrades biologically, but it seems that it is not a great problem for open systems, since such a degradation is perceptible only after 24 h. We strongly believe that this new bio-drag reducer can be an alternative to synthetic polymers or other biopolymers, since it is extremely cheap and easy to be obtained.  相似文献   

12.
13.
A study is made of the influence of a homogeneous magnetic field on the mass transfer for a spherical solid particle and a liquid drop in a flow of a viscous electrically conducting fluid. The previously obtained [1] velocity field of the fluid is used to calculate the concentration distribution in the diffusion boundary layer, the density of the diffusion flux, and the Nusselt number, which characterizes the mass transfer between the particle and the surrounding medium.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 189–192, January–February, 1980.  相似文献   

14.
15.
The problem of flow of a viscous fluid around a spherical drop has been examined for the limiting case of small and large Reynolds numbers in several investigations (see [1–3], for instance; there is a detailed review of various approximate solutions in [4]). For the intermediate range of Reynolds numbers (approximately 1Re100), where numerical integration of the complete Navier-Stokes equations is necessary, there are solutions of special cases of the problem —flow of air around a solid sphere [5–7], a gas bubble [8, 9], and water drops [10]. The present paper deals with flow around a spherical drop at intermediate Reynolds numbers up to Re=200 for arbitrary values of the ratio of dynamic viscosities =1/2 inside and outside the drop. It is shown that a return flow can arise behind the drop in flow without separation. In such conditions the circulatory flow inside the drop breaks up. An approximate formula for the drag coefficient of the drop is given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 8–15, January–February, 1976.We thank L. A. Galin, G. I. Petrov, L. A. Chudov, and participants in the seminars led by them for useful discussions.  相似文献   

16.
17.
This investigation offers a detailed analysis of solutions to the two-dimensional Oseen problem in the exterior of an obstacle for large Reynolds numbers. It is motivated by mathematical results highlighting the important role played by the Oseen flows in characterizing the asymptotic structure of steady solutions to the Navier–Stokes problem at large distances from the obstacle. We compute solutions of the Oseen problem based on the series representation discovered by Tomotika and Aoi (Q J Mech Appl Math 3:140–161, 1950) where the expansion coefficients are determined numerically. Since the resulting algebraic problem suffers from very poor conditioning, the solution process involves the use of very high arithmetic precision. The effect of different numerical parameters on the accuracy of the computed solutions is studied in detail. While the corresponding inviscid problem admits many different solutions, we show that the inviscid flow proposed by Stewartson (Philos Mag 1:345–354, 1956) is the limit that the viscous Oseen flows converge to as Re → ∞. We also draw some comparisons with the steady Navier–Stokes flows for large Reynolds numbers.  相似文献   

18.
When fluctuating temperature field is considered to be super imposed on a general field of eddy turbulence, the early period decay phenomena in regard to velocity, temperature and velocity-temperature are guided by three dynamical equations that are obtained here in a straightforward manner. The equations so obtained are simplified for the case of homogeneous turbulence and subsequently for the case of homogeneous and isotropic turbulence.  相似文献   

19.
Steady irrotational flow of inviscid liquid of density ρl around a spherical gas bubble which lies on the axis of a cylindrical pipe is investigated using the analysis of Smythe (Phys. Fluids 4 (1961) 756). The bubble radius b=qa is assumed small compared to the pipe radius a, and the interfacial tension between gas and liquid is γ. Far from the bubble, in the frame in which the bubble is at rest, the liquid velocity along the pipe is v0, whereas the liquid velocity at points on the wall closest to the bubble is Uzw=v0(1+1.776q3+⋯). The decrease in wall pressure as the bubble passes is therefore Δp=1.776ρlv02q3. When the Weber number W=2bv02ρl/γ is small, the bubble deforms into an oblate spheroid with aspect ratio χ=1+9W(1+1.59q3)/64. If the fluid viscosity μ is non-zero, and the Reynolds number Re=2v0ρlb/μ is large, a viscous boundary layer develops on the walls of the pipe. This decays algebraically with distance downstream of the bubble, and an exponentially decaying similarity solution is found upstream. The drag D on the bubble is D=12πμv0b(1−2.21Re−1/2)(1+1.59q3)+7.66μv0bRe1/2q9/2, larger than that given by Moore (J. Fluid Mech. 16 (1963) 161) for motion in unbounded fluid. At high Reynolds numbers the dissipation within the viscous boundary layers might dominate dissipation in the potential flow away from the pipe walls, but such high Reynolds numbers would not be achieved by a spherical air bubble rising in clean water under terrestrial gravity.  相似文献   

20.
Summary The development of a plane Poiseuille flow at low Reynolds numbers is studied; given any velocity distribution in the section x=0, it is possible to evaluate its evolution along the direction of motion, by means of quite simple calculation. A numerical example is also given.
Sommario Si esamina l'evoluzione del profilo di velocità in moto piano laminare a bassi numeri di Reynolds. Assegnata una qualsiasi distribuzione di velocità nella sezione x=0, è possibile calcolare come questa si modifichi lungo il percorso. Si fornisce un esempio numerico.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号