共查询到20条相似文献,搜索用时 15 毫秒
1.
The first two-dimensional potential energy surface for the Xe-CO van der Waals interaction is calculated by the single and double excitation coupled-cluster theory with noniterative treatment of triple excitations. Mixed basis sets, aug-cc-pVQZ for the C and O atoms, and aug-cc-pVQZ-PP for the Xe atom, with an additional (3s3p2d2f1g) set of midbond functions, are used. Our potential energy surface has a single, nearly T-shaped minimum of -131.87 cm(-1) at R(e)=7.80a(0) and theta(e)=102.5 degrees. Based on the potential, the bound state energies are calculated for seven isotopomers of the Xe-(12)C(16)O complex, seven isotopomers of the Xe-(13)C(16)O complex, and three isotopomers of the Xe-(13)C(18)O complex. Compared with available experimental data, the predicted transition frequencies and spectroscopic constants are in good agreement with the experimental results. 相似文献
2.
We report two ab initio intermolecular potential energy surfaces for Ne-HCCCN using a supermolecular method. The calculations were performed at the fourth-order M?ller-Plesset (MP4) and the coupled cluster singles-and-doubles with noniterative inclusion of connected triples [CCSD(T)] levels with the full counterpoise correction for the basis set superposition error and a large basis set including bond functions. The complex was found to have a planar T-shaped structure minimum and a linear minimum with the Ne atom facing the H atom. The two-dimensional discrete variable representation method was employed to calculate the rovibrational bound states. In addition, the microwave spectra including intensities for the ground vibrational state were predicted. The results show that the spectrum is dominated by b-type (DeltaK(a) = +/-1) transitions with very weak a-type (DeltaK(a) = 0) transitions. The calculated results at the CCSD(T) potential are in good agreement with those at MP4 potential. 相似文献
3.
New ab initio potential energy surfaces for the (2)Pi ground electronic state of the Ar-SH complex are presented, calculated at the RCCSD(T)/aug-cc-pV5Z level. Weakly bound rotation-vibration levels are calculated using coupled-channel methods that properly account for the coupling between the two electronic states. The resulting wave functions are analyzed and a new adiabatic approximation including spin-orbit coupling is proposed. The ground-state wave functions are combined with those obtained for the excited (2)Sigma(+) state [D. M. Hirst, R. J. Doyle, and S. R. Mackenzie, Phys. Chem. Chem. Phys. 6, 5463 (2004)] to produce transition dipole moments. Modeling the transition intensities as a combination of these dipole moments and calculated lifetime values [A. B. McCoy, J. Chem. Phys. 109, 170 (1998)] leads to a good representation of the experimental fluorescence excitation spectrum [M.-C. Yang, A. P. Salzberg, B.-C. Chang, C. C. Carter, and T. A. Miller, J. Chem. Phys. 98, 4301 (1993)]. 相似文献
4.
Z. Y. Chen B. D. May A. W. Castleman Jr. 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1993,25(3):239-246
The potential energy surface (PES) of linear Ar 3 + is calculated at the MP4/6-31G* level including all single, double, triple and quadruple excitations. The results show that the PES of the linear Ar 3 + has a very flat valley along the asymmetric stretching vibration normal mode, ν3. A higher level quadratic configuration interaction calculation including single, double and triple substitutions QCISD (T) along this flat valley suggests that an asymmetric geometry energy minimum reported earlier based on MP2 [1] is due to symmetry breaking in UHF. The global minimum of the PES is found to be for the symmetric geometry atR ab =R bc =2.66±0.01 Å, which is in good agreement with the MRD-CI calculation [2] and expectations from our earlier photodissociation experiments [3]. The calculational results are compared with other theoretical calculations, and are discussed in the context of the photodissociation and dynamics of dissociation experiments conducted on Ar 3 + . 相似文献
5.
The intermolecular potential energy surface of He-LiH complex was studied using the full-electronic complete forth-order Miller-Plesset perturbation (MPPT) method.In ab initio calculations,the bond length of LiH was fixed at 0 159 5 nm.The potential has two local minima of Vm=-179.93 cm for the linear He LiH geormetrv at Rm=0.227 nm and Vm=-10.44 cm-1 for the linear He-HL1 geometry at Rm=0.516 nm The potemal exhibits strong anisotropy The analytic potential function with 31 parameters was determined by fitting to the calculated ab,mtio potentials The influence of variation of LiH bond length on the potential energy surface was also studied 相似文献
6.
van der Avoird A Bondo Pedersen T Dhont GS Fernández B Koch H 《The Journal of chemical physics》2006,124(20):204315
A four-dimensional intermolecular potential-energy surface has been calculated for the HCN-HCl complex, with the use of the coupled cluster method with single and double excitations and noniterative inclusion of triples. Data for more than 13,000 geometries were represented by an angular expansion in terms of coupled spherical harmonics; the dependence of the expansion coefficients on the intermolecular distance R was described by the reproducing kernel Hilbert space method. The global minimum with De=1565 cm(-1) and Re=7.47a0 has a linear HCN-HCl hydrogen-bonded structure with HCl as the donor. A secondary hydrogen-bonded equilibrium structure with De=564 cm(-1) and Re=8.21a0 has a T-shaped geometry with HCN as the donor and the acceptor HCl molecule nearly perpendicular to the intermolecular axis. This potential surface was used in a variational approach to compute a series of bound states of the isotopomers HCN-H35Cl, DCN-H35Cl, and HCN-H37Cl for total angular momentum J=0,1,2 and spectroscopic parities e, f. The results could be analyzed in terms of the approximate quantum numbers of a linear polyatomic molecule with two coupled bend modes, plus a quantum number for the intermolecular stretch vibration. They are in good agreement with the recent high resolution spectrum of Larsen et al. [Phys. Chem. Chem. Phys. 7, 1953 (2005)] in the region of 330 cm(-1) corresponding to the HCl libration. The (partly anomalous) effects of isotopic substitutions on the properties of the complex were explained with the aid of the calculations. 相似文献
7.
《Chemical physics》1986,104(2):207-211
Important parts of the lowest triplet potential energy surface of the BH+2 molecular system are studied at the ab initio level. Obtained topological parameters of this surface and regions of its crossing with excited surfaces are compared with results of the DIM method and with previous ab initio studies. 相似文献
8.
Makarewicz J 《The Journal of chemical physics》2011,134(6):064322
The intermolecular potential energy surface (PES) of the naphthalene-argon (NpAr) complex is constructed using an ab initio method. The molecule-argon interaction energy is computed at the level of the second-order M?ller-Plesset (MP2) theory combined with the augmented correlation consistent polarized valence double-ζ basis set. The analytical PES fitted to a large set of single energy values is further improved with the help of correction functions determined by calculations of the interaction energy at the coupled cluster level including single and double excitations supplemented by triple excitations performed for a limited set of intermolecular configurations. The PES determined is very flat near its four equivalent global minima of -493 cm(-1) located from both sides of the Np plane at a distance of 3.435 A? and shifted from the center of Np by ±0.43 A? along its long symmetry axis. The large-amplitude motion of Ar in the complex is investigated, and dynamical consequence of a strong intermode coupling is discovered in the excited vibrational states. The theoretical results obtained allow for the reassignment of the spectral bands observed in the electronic transition S(1) ← S(0) of the NpAr complex. 相似文献
9.
A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A')→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method. 相似文献
10.
We report an ab initio intermolecular potential energy surface of the Ar-HCCCN complex using a supermolecular method. The calculations were performed using the fourth-order M?ller-Plesset theory with the full counterpoise correction for the basis set superposition error and a large basis set including bond functions. The complex was found to have a planar T-shaped structure minimum and a linear minimum with the Ar atom facing the H atom. The T-shaped minimum is the global minimum with the well depth of 236.81 cm(-1). A potential barrier separating the two minima is located at R=5.57 A and theta=20.39 degrees with the height of 151.59 cm(-1). The two-dimensional discrete variable representation was employed to calculate the rovibrational energy levels for Ar-HCCCN. The rovibrational spectra including intensities for the ground state and the first excited intermolecular vibrational state are also presented. The results show that the spectra are mostly b-type (Delta K(a)=+/-1) transitions with weak a-type (Delta K(a)=0) transitions in structure, which are in good agreement with the recent experimental results [A. Huckauf, W. Jager, P. Botschwina, and R. Oswald, J. Chem. Phys. 119, 7749 (2003)]. 相似文献
11.
A 285-point multi-reference configuration-interaction involving single and double excitations (MRS-DCI) potential energy surface
for the electronic ground state of Li2H is determined by using 6-311G (2df, 2pd) basis set. A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a X2 of 4.64 × 10-6. The equilibrium geometry occurs at Re =0.172 nm and <LiHLi =94.10. The dissociation energy for reaction Li2H(2A)⇑ Li2(1⌆g)+H(2S) is 243.910 kJ/mol. and that for reaction Li2H(2A)⇑HLi(1be)+Li(2S) is 106.445 kJ/mol. The inversion barrier height is 50.388 kJ/mol. The vibrational energy levels are calculated using the
discrete variable representation (DVR) method.
Project supported by the National Natural Science Foundation of China (grant No. 29673029) and by the Special Doctoral Research
Foundation of the State Education Commission of China. 相似文献
12.
Gregory M. Wright Richard J. Simmonds David E. Parry 《Journal of computational chemistry》1988,9(6):600-603
Ab initio calculations employing a standard double-zeta basis set augmented with various polarization functions have been used to investigate the lowest energy region of the ground-state potential energy surface of the formamide molecule. Hartree-Fock calculations with only d polarization functions on the nonhydrogen atoms located two stable minima, that with geometry distorted from planarity having slightly lower energy; only one stable minimum with planar structure is found when p polarization functions on the hydrogens are included. In contrast optimizations, which account approximately for the correlation energy using second-order Møller-Plesset perturbation theory consistently favor a single slightly nonplanar minimum energy geometry. 相似文献
13.
14.
15.
L.A. Curtiss 《Chemical physics letters》1979,68(1):225-231
Ab initio molecular orbital calculations have carried out on various structures of LiAlF4 complex using minimal and extended basis sets. A C2v structure with two fluorines in the bridge was found to be more stable than structures with one and three fluorines in the bridge. Migration of the Li+ in the complex is found to be relatively easy and the AlF?4 anion is found to be distorted from tetrahedral symmetry. 相似文献
16.
The potential energy surfaces of the van der Waals complexes benzene-Ar and p-difluorobenzene-Ar have been investigated at the second-order M?ller-Plesset (MP2) level of theory with the aug-cc-pVDZ basis set. Calculations were performed with unconstrained geometry optimization for all stationary points. This study has been performed to elucidate the nature of a conflict between experimental results from dispersed fluorescence and velocity map imaging (VMI). The inconsistency is that spectra for levels of p-difluorobenzene-Ar and -Kr below the dissociation thresholds determined by VMI show bands where free p-difluorobenzene emits, suggesting that dissociation is occurring. We proposed that the bands observed in the dispersed fluorescence spectra are due to emission from states in which the rare gas atom orbits the aromatic chromophore; these states are populated by intramolecular vibrational redistribution from the initially excited level [S. M. Bellm, R. J. Moulds, and W. D. Lawrance, J. Chem. Phys. 115, 10709 (2001)]. To test this proposition, stationary points have been located on both the benzene-Ar and p-difluorobenzene-Ar potential energy surfaces (PESs) to determine the barriers to this orbiting motion. Comparison with previous single point CCSD(T) calculations of the benzene-Ar PES has been used to determine the amount by which the barriers are overestimated at the MP2 level. As there is little difference in the comparable regions of the benzene-Ar and p-difluorobenzene-Ar PESs, the overestimation is expected to be similar for p-difluorobenzene-Ar. Allowing for this overestimation gives the barrier to movement of the Ar atom around the pDFB ring via the valley between the H atoms as < or = 204 cm(-1) in S0 (including zero point energy). From the estimated change upon electronic excitation, the corresponding barrier in S1 is estimated to be < or = 225 cm(-1). This barrier is less than the 240 cm(-1) energy of 30(2), the vibrational level for which the anomalous "free p-difluorobenzene" bands were observed in dispersed fluorescence from p-difluorobenzene-Ar, supporting our hypothesis for the origin of these bands. 相似文献
17.
Pure rotational transitions of the weakly bound complex He-N(2)O and three minor isotopomers (He-(14)N(15)NO, He-(15)N(14)NO, and He-(15)N(15)NO) were measured in the frequency region from 6 to 20 GHz. Predictions for the microwave transition frequencies were based on the infrared work by Tang and McKellar [J. Chem. Phys. 117, 2586 (2002)]. In the case of (14)N containing isotopomers, nuclear quadrupole hyperfine structure of the rotational transitions was observed and analyzed. The resulting spectroscopic parameters were used to determine geometrical and dynamical information about the complex. An ab initio potential energy surface was calculated at the coupled cluster level of theory with single and double excitations and perturbative inclusion of triple excitations. This surface was constructed using the augmented correlation consistent polarized valence triple zeta basis set for all atoms with the inclusion of bond functions for the van der Waals bond. Bound state calculations were done to determine the energies of low-lying rovibrational levels that are supported by the potential energy surface. The resulting transition energies agree with the experimental values to 1% or better. 相似文献
18.
Koput J 《The journal of physical chemistry. A》2008,112(12):2743-2746
The equilibrium structure and potential energy surface of calcium dichloride (CaCl2) have been determined from accurate ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with basis sets of quadruple- and quintuple-zeta quality. The CaCl2 molecule was found to be linear at equilibrium. The vibration-rotation energy levels of various CaCl2 isotopomers were predicted by the variational method. The calculated spectroscopic constants could be used to guide future high-resolution spectroscopic experiments on calcium dichloride. 相似文献
19.
The equilibrium structure and potential energy surface of beryllium dihydride BeH(2) in its ground electronic state have been determined from highly accurate ab initio calculations. The vibration-rotation energy levels of three isotopomers BeH(2), BeD(2), and BeHD were predicted using the variational method. The calculated spectroscopic constants are in remarkably good agreement with the existing experimental data (sub-cm(-1) accuracy) and should be useful in a further analysis of high-resolution vibration-rotation spectra of all three isotopomers. 相似文献
20.
Hellmann R Bich E Vogel E Vesovic V 《Physical chemistry chemical physics : PCCP》2011,13(30):13749-13758
A six-dimensional potential energy hypersurface (PES) for two interacting rigid hydrogen sulfide molecules was determined from high-level quantum-mechanical ab initio computations. A total of 4016 points for 405 different angular orientations of two molecules were calculated utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory and extrapolating the calculated interaction energies to the complete basis set limit. An analytical site-site potential function with eleven sites per hydrogen sulfide molecule was fitted to the interaction energies. The PES has been validated by computing the second pressure virial coefficient, shear viscosity, thermal conductivity and comparing with the available experimental data. The calculated values of volume viscosity were not used to validate the potential as the low accuracy of the available data precluded such an approach. The second pressure virial coefficient was evaluated by means of the Takahashi and Imada approach, while the transport properties, in the dilute limit, were evaluated by utilizing the classical trajectory method. In general, the agreement with the primary experimental data is within the experimental error for temperatures higher than 300 K. For lower temperatures the lack of reliable data indicates that the values of the second pressure virial coefficient and of the transport properties calculated in this work are currently the most accurate estimates for the thermophysical properties of hydrogen sulfide. 相似文献