首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Hexagonal close-packed (HCP) C60 and C70 films have been prepared by the Langmuir method and examined by electron microscopy and electron-diffraction analysis. It has been shown that the vacuum deposition of a C60+C70 mixture results in the formation of a film with small sized grains and a distorted C60-HCP structure. The simultaneous deposition of C60 and ferrocene results in the formation of a film with a changed morphology and an electron-diffraction pattern that contains a variable amount of ferrocene depending on the experimental conditions. The electron-diffraction pattern corresponds to the presence of the known molecular complex C60[(C5H5)2Fe]2. The analogous simultaneous deposition of fullerene C60 and cobaltocene results in the formation of a C60 film stable in air and water, which contains carbon and cobalt (from the data of X-ray fluorescence, electron microscopy and microdiffraction). It has a different morphology and different diffraction patterns than pure C60 films and, depending on the cobaltocene content (relative to that of fullerene), appears to be a fullerite film doped with various amounts of cobaltocenium fullende, which is an ionic compound.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1379–1383, August, 1994.The work was financially supported by the Russian Foundation for Basic Research (Projects 93-03-4676 and 93-03-18368).  相似文献   

2.
The scaling behavior of band gaps and fundamental quantities of exciton, i.e., reduced mass, size, and binding strength, in three families of quasi one-dimensional graphene nanoribbons with hydrogen passivated armchair shaped edge (AGNRs) are comprehensively investigated by density functional theory with quasi-particle corrections and many body, i.e., electron-hole, interactions. Compared with single-walled carbon nanotubes (SWCNTs) where the scaling character features a single exponent, each family of AGNRs has its own single exponent, due to its intrinsic zero curvature, which also accounts for the absent "family spreading" of optical transition energies in the smaller width region in the Kataura plots of AGNRs as compared to those of SWCNTs. Moreover, the scaling relation between exciton binding strength and the geometric parameter is established.  相似文献   

3.
4.
Synthetic carbon allotrope chemistry is currently among the most rapidly growing topics in materials chemistry. The youngest and at the same time probably the most promising representative of new carbon allotropes is graphene. In this article we outline our recent contributions to chemical graphene formation and functionalization.  相似文献   

5.
In order to investigate and optimize the electronic transport processes in carbon nanotubes doped with organic molecules, we have performed large-scale quantum electronic structure calculations coupled with a Green's function formulation for determining the quantum conductance. Our approach is based on an original scheme where quantum chemistry calculations on finite systems are recast to infinite, non-periodic (i.e., open) systems, therefore mimicking actual working devices. Results from these calculations clearly suggest that the electronic structure of a carbon nanotube can be easily manipulated by encapsulating appropriate organic molecules. Charge transfer processes induced by encapsulated organic molecules lead to efficient n- and p-type doping of the carbon nanotube. Even though a molecule can induce p and n doping, it is shown to have a minor effect on the transport properties of the nanotube as compared to a pristine tube. This type of doping therefore preserves the intrinsic properties of the pristine tube as a ballistic conductor. In addition, the efficient process of charge transfer between the organic molecules and the nanotube is shown to substantially reduce the susceptibility of the pi electrons of the nanotube to modification by oxygen while maintaining stable doping (i.e., no dedoping) at room temperature.  相似文献   

6.
The "open" and "closed" isomers of the diarylethene molecule that can be converted between each other upon photo-excitation are found to have drastically different current-voltage characteristics when sandwiched between two graphene nanoribbons (GNRs). More importantly, when one GNR is metallic and another one is semiconducting, strong rectification behavior of the "closed" diarylethene isomer with the rectification ratio >10(3) is observed. The surprisingly high rectification ratio originates from the band gap of GNR and the bias-dependent variation of the lowest unoccupied molecular orbital of the diarylethene molecule, the combination of which completely shuts off the current at positive biases. Results presented in this paper may form the basis for a new class of molecular electronic devices.  相似文献   

7.
Novel ZnS quantum dots (QDs) and ZnS quantum flakes (QFs) were successfully prepared with graphene nanosheets (GNs) as a special template, and two unique heterostructures of ZnS/GNs were also obtained. Due to the structure-directing template effect of GNs, the as-synthesized ZnS with different morphologies, dots or flakes, were uniformly distributed on the surface of GNs by controlling nucleation and growth. The two different heterostructures of ZnS/GNs exhibited obvious photovoltaic response, and ZnS/GN QFs-on-sheet heterostructures show higher photovoltage than that of ZnS/GN QDs-on-sheet.  相似文献   

8.
The electronic and magnetic properties of one-dimensional titanium chains adsorbed on semiconducting armchair graphene nanoribbons (GNRs) are studied using the density functional theory. The results show that the strong hybridization between the titanium chain and the GNR gives rise to ferromagnetism and metallicity of the adsorption system. The electronic structure of the adsorption system is found to depend strongly on the width of the GNR. The adsorption system may offer half-metallic ferromagnetism when the width of GNR is less than 2.1 nm, implying a new and promising way to realize GNR based spintronics.  相似文献   

9.

A combined approach (endohedral doping and exohedral environment) to stabilization of boron clusters with classical fullerene structures has been studied. The boron clusters with classical fullerene structures are stable when heteroatomic part of the complex (endohedral atom and exohedral environment) donates in total 18 electrons to the composite system, stability of which depends on the coordination capabilities and donor ability of the endohedral and surrounding atoms. The most effective stabilization is achieved in the case of the endohedral transition metals atoms, whereas the most effective environment is given by the lithium surrounding.

  相似文献   

10.
Herein, we predict that graphene nanoribbons will be nonplanar under the influence of a critical perpendicular field. Our investigation demonstrates that the perpendicular field induces mixing of σ and π orbitals in graphene nanoribbons through the second order Stark effect which eventually modulates the electron-nuclear interaction strongly in favor of a bent structure.  相似文献   

11.
Nitrogen (N)-doped carbon materials were shown in recent studies to have promising catalytic activity for oxygen reduction reaction (ORR) as a metal-free alternative to platinum, but the underlying molecular mechanism or even the active sites for high catalytic efficiency are still missing or controversial both experimentally and theoretically. We report here the results of periodic density functional theory (DFT) calculations about the ORR at the edge of a graphene nanoribbon (GNR). The edge structure and doped-N near the edge are shown to enhance the oxygen adsorption, the first electron transfer, and also the selectivity toward the four-electron, rather than the two-electron, reduction pathway. We find that the outermost graphitic nitrogen site in particular gives the most desirable characteristics for improved ORR activity, and hence the active site. However, the latter graphitic nitrogen becomes pyridinic-like in the next electron and proton transfer reaction via the ring-opening of a cyclic C-N bond. This inter-conversion between the graphitic and pyridinic sites within a catalytic cycle may reconcile the controversy whether the pyridinic, graphitic, or both nitrogens are active sites.  相似文献   

12.
13.
Albeit its chemical inertness, rare gas doping can substantially enhance the quantum size effect of nanocrystals, yet little attention has been paid on this fascination and the mechanism behind remains unclear. Here, we show that the rare gas dopant breaks bonds of its neighboring atoms, which effects the same to atomic under‐coordination on the bond strain, energy quantum entrapment, and valence electron polarization of Li and Na clusters. Consistency between density functional theory calculation and the bond‐order‐length‐strength correlation prediction revealed that the bond strain by 16.86% and 21.12% before and after He doping for Na30 clusters. Observations suggest an effective yet simple means to modulate the physical properties by doping the inert gases.  相似文献   

14.
《中国化学快报》2022,33(6):3263-3266
Understanding the impact of substituents on the quantum interference effect at single molecule scale is of great importance for the design of molecular devices. In this work, three platinum(II) complexes with –H, –NH2 and –NO2 groups on conductive backbones were designed and synthesized. Single-molecule conductance, which was measured using scanning tunnelling microscope break junction (STM-BJ) technique, demonstrated a conductance freeze phenomenon under the variation of substituents. Theoretical study revealed that, despite the electronic effect of the substituents shifting the energy level of molecular orbital, the quantum interference effect vanished the influence of electronic effect on the conductance and eventually leaded to the conductance freeze.  相似文献   

15.
Shi  Libo  Niu  Xiangheng  Liu  Tingting  Zhao  Hongli  Lan  Minbo 《Mikrochimica acta》2015,182(15):2485-2493

We have synthesized nitrogen-doped graphene nanoribbons (N-GrNRs) by unzipping multi-walled carbon nanotubes (CNTs) under strongly oxidizing conditions and subsequent doping with nitrogen by a low-temperature hydrothermal method. The N-GNRs were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy, and assembled on a disposable screen-printed carbon electrode to give a sensor for H2O2 that was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, chronocoulometry and chronoamperometry. The nano-modified electrode displays enhanced electron transfer ability, and has a large active surface and a large number of catalytically active sites that originate from the presence of nitrogen atoms. This results in a catalytic activity towards H2O2 reduction at near-neutral pH values that is distinctly improved compared to electrodes modified with CNTs or unzipped (non-doped) CNTs only. At a working potential of −0.4 V (vs. Ag/AgCl), the amperometric responses to H2O2 cover the 5 to 2785 μM concentration range, with a limit of detection as low as 1.72 μM. This enzyme-free electrochemical sensor exhibits outstanding selectivity and long-term stability for H2O2 detection.

Nitrogen-doped graphene nanoribbons (N-GrNRs) were expediently synthesized for highly sensitive and selective detection of H2O2.

  相似文献   

16.
The effect of cellular energetics on foreign protein production   总被引:1,自引:0,他引:1  
Escherichia coli strain F-122 was used to determine if there are additional physiological effects, other than decreasing energetic efficiency accompanied by the excretion of the acetate, on foreign protein production. This organism was the host for expressing HIV582-β-galactosidase fusion protein under the control of thetrp promoter, with ampicillin resistance. By comparing parallel batch cultures with and without acetate addition, it was found that the presence of acetate in the media did not influence β-galactosidase activity. In these experiments, it appears that the low protein productivity often observed during acetate formation is the result of inefficient cell metabolism, rather than acetate acting as a specific inhibitor of protein production.  相似文献   

17.
We perform density functional calculations on one-dimensional zigzag edge graphene nanoribbons (ZGNRs) of different widths, with and without edge doping including semilocal exchange correlations. Our study reveals that, although the ground state of edge-passivated (with hydrogen) ZGNRs prefers to be anti-ferromagnetic, the doping of both of the edges with boron atoms stabilizes the system in a ferromagnetic ground state. Both the local and semilocal exchange correlations result in half-metallicity in edge-passivated ZGNRs at a finite cross-ribbon electric field. However, the ZGNR with boron edges shows half-metallic behavior irrespective of the ribbon width even in the absence of electric field and this property sustains for any field strength, opening a huge possibility of applications in spintronics.  相似文献   

18.
After a short comparative analysis of different macromolecular ligands reported in the relevant literature, the presentation will be centered on the results obtained in the authors' laboratory using structurally defined inorganic supports in terms also of their macromolecular structure. Zeolites and mesomorphous silica can link, after proper chemical modification of their surface with MAO, unmodified metallocene complexes through cage entrapment and weak interactions, thus allowing the transfer from the solution to the solid phase. The metallocene complexes in their new phase are characterized by the catalytic behavior in olefin polymerization after activation with MAO. A decrease of productivity is generally observed depending on the type of support. The steric hindrance provided by the support is evidenced by the depression of chain transfer rate with formation of higher molecular weight polymers. Also shape selectivity is observed during copolymerization of ethylene with α‐olefins having variable size. These steric effects are released when going from HY zeolite to MCM silica.  相似文献   

19.
A series of uranium(IV) mixed-ligand amide–halide/pseudohalide complexes (C5Me5)2U[N(SiMe3)2](X) (X = F (1), Cl (2), Br (3), I (4), N3 (5), NCO (6)), (C5Me5)2U(NPh2)(X) (X = Cl (7), N3 (8)), and (C5Me5)2U[N(Ph)(SiMe3)](X) (X = Cl (9), N3 (10)) have been prepared by one electron oxidation of the corresponding uranium(III) amide precursors using either copper halides, silver isocyanate, or triphenylphosphine gold(I)azide. Agostic U?H–C interactions and η3-(N,C,C′) coordination are observed for these complexes in both the solid-state and solution. There is a linear correlation between the chemical shift values of the C5Me5 ligand protons in the 1H NMR spectra and the UIV/UIII reduction potentials of the (C5Me5)2U[N(SiMe3)2](X) complexes, suggesting that there is a common origin, that is overall σ-/π-donation from the ancillary (X) ligand to the metal, contributing to both observables. Optical spectroscopy of the series of complexes 16 is dominated by the (C5Me5)2U[N(SiMe3)2] core, with small variations derived from the identity of the halide/pseudohalide. The considerable π-donating ability of the fluoride ligand is reflected in both the electrochemistry and UV-visible-NIR spectroscopic behavior of the fluoride complex (C5Me5)2U[N(SiMe3)2](F) (1). The syntheses of the new trivalent uranium amide complex, (C5Me5)2U[N(Ph)(SiMe3)](THF), and the two new weakly-coordinating electrolytes, [Pr4N][B{3,5-(CF3)2C6H3}4] and [Pr4N][B(C6F5)4], are also reported.  相似文献   

20.
Nitrogen-doped carbon quantum dots (N-CQDs) with an average diameter of 2 nm were synthesized by carbonization of diethylene triamine pentacetate acid (DTPA). The simple prepared N-CQDs showed excellent electrochemiluminescence (ECL) property and were used as luminophors to fabricate a sandwich-type ECL immunosensor. Aminated graphene (NH2-G) was also synthesized and used as a label of secondary antibody. The labeled NH2-G could effectively quench the ECL of N-CQDs modified on electrodes due to ECL resonance energy transfer (ERET). Immunological recognition which induced ECL quenching enabled the quantitative determination of biomarkers. Alpha fetoprotein (AFP) was selected as a model analyte to investigate the analytical performance of the proposed immunosensor. Under optimal conditions, a good linear relationship between ECL intensity and the logarithm of AFP concentration was obtained in the range of 0.01–100 ng mL−1 with the detection limit of 3.3 pg mL−1. The proposed ECL immunosensor showed good stability, acceptable selectivity and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号