首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomolecular transport systems based on cytoskeletal filaments and motor proteins have become promising tools for a wide range of nanotechnological applications. In this paper, we report control of such transport systems using substrates with switchable shape. We demonstrate this approach on the example of microtubules gliding on surfaces of self‐folding polymer bilayers with adsorbed kinesin motors. The polymer bilayers are able to undergo reversible transitions between flat and tube‐like shapes that allow the externally controlled retention and release of gliding microtubules. The demonstrated approach, based on surfaces with reconfigurable topography, opens broad perspectives to control biomolecular transport systems for bioanalytical and sensing applications, as well as for the construction of subcellular compartments in the field of synthetic biology.  相似文献   

2.
Herold C  Leduc C  Stock R  Diez S  Schwille P 《Chemphyschem》2012,13(4):1001-1006
We report on a minimal system to mimic intracellular transport of membrane-bounded, vesicular cargo. In a cell-free assay, purified kinesin-1 motor proteins were directly anchored to the membrane of giant unilamellar vesicles, and their movement studied along two-dimensional microtubule networks. Motion-tracking of vesicles with diameters of 1-3 μm revealed traveling distances up to the millimeter range. The transport velocities were identical to velocities of cargo-free motors. Using total internal reflection fluorescence (TIRF) microscopy, we were able to estimate the number of GFP-labeled motors involved in the transport of a single vesicle. We found that the vesicles were transported by the cooperative activity of typically 5-10 motor molecules. The presented assay is expected to open up further applications in the field of synthetic biology, aiming at the in vitro reconstitution of sub-cellular multi-motor transport systems. It may also find applications in bionanotechnology, where the controlled long-range transport of artificial cargo is a promising means to advance current lab-on-a-chip systems.  相似文献   

3.
The in vitro motility assay is valuable for fundamental studies of actomyosin function and has recently been combined with nanostructuring techniques for the development of nanotechnological applications. However, the limited understanding of the interaction mechanisms between myosin motor fragments (heavy meromyosin, HMM) and artificial surfaces hampers the development as well as the interpretation of fundamental studies. Here we elucidate the HMM-surface interaction mechanisms for a range of negatively charged surfaces (silanized glass and SiO2), which is relevant both to nanotechnology and fundamental studies. The results show that the HMM-propelled actin filament sliding speed (after a single injection of HMM, 120 microg/mL) increased with the contact angle of the surfaces (in the range of 20-80 degrees). However, quartz crystal microbalance (QCM) studies suggested a reduction in the adsorption of HMM (with coupled water) under these conditions. This result and actin filament binding data, together with previous measurements of the HMM density (Sundberg, M.; Balaz, M.; Bunk, R.; Rosengren-Holmberg, J. P.; Montelius, L.; Nicholls, I. A.; Omling, P.; T?gerud, S.; M?nsson, A. Langmuir 2006, 22, 7302-7312. Balaz, M.; Sundberg, M.; Persson, M.; Kvassman, J.; M?nsson, A. Biochemistry 2007, 46, 7233-7251), are consistent with (1) an HMM monolayer and (2) different HMM configurations at different contact angles of the surface. More specifically, the QCM and in vitro motility assay data are consistent with a model where the molecules are adsorbed either via their flexible C-terminal tail part (HMMC) or via their positively charged N-terminal motor domain (HMMN) without other surface contact points. Measurements of zeta potentials suggest that an increased contact angle is correlated with a reduced negative charge of the surfaces. As a consequence, the HMMC configuration would be the dominant configuration at high contact angles but would be supplemented with electrostatically adsorbed HMM molecules (HMMN configuration) at low contact angles. This would explain the higher initial HMM adsorption (from probability arguments) under the latter conditions. Furthermore, because the HMMN mode would have no actin binding it would also account for the lower sliding velocity at low contact angles. The results are compared to previous studies of the microtubule-kinesin system and are also discussed in relation to fundamental studies of actomyosin and nanotechnological developments and applications.  相似文献   

4.
Biomolecular motors, such as kinesins, have great potential for micro-actuation and micro- or nanoscale active transport when integrated into microscale devices. However, the stability and limited shelf life of these motor proteins and their associated protein filaments is a barrier to their implementation. Here we demonstrate that freeze-drying or critical point-drying kinesins adsorbed to glass surfaces extends their lifetime from days to more than four months. Further, photoresist deposition and removal can be carried out on these motor-adsorbed surfaces without loss of motor function. The methods developed here are an important step towards realizing the integration of biological motors into practical devices, and these approaches can be extended to patterning and preserving other proteins immobilized on surfaces.  相似文献   

5.
Adenosine triphosphate (ATP) is the energy source for various biochemical processes and biomolecular motors in living things. Development of ATP antagonists and their stimuli-controlled actions offer a novel approach to regulate biological processes. Herein, we developed azobenzene-based photoswitchable ATP antagonists for controlling the activity of motor proteins; cytoplasmic and axonemal dyneins. The new ATP antagonists showed reversible photoswitching of cytoplasmic dynein activity in an in vitro dynein-microtubule system due to the trans and cis photoisomerization of their azobenzene segment. Importantly, our ATP antagonists reversibly regulated the axonemal dynein motor activity for the force generation in a demembranated model of Chlamydomonas reinhardtii. We found that the trans and cis isomers of ATP antagonists significantly differ in their affinity to the ATP binding site.  相似文献   

6.
Nucleic acids include substantial information in their base sequence and their hybridization-complexation motifs. Recent research efforts attempt to utilize this biomolecular information to develop DNA nanostructures exhibiting machine-like functions. DNA nano-assemblies revealing tweezers, motor, and walker activities exemplify a few such machines. The DNA-based machines provide new components that act as sensitive sensors, transporters, or drug delivery systems.  相似文献   

7.
Movement is intrinsic to life. Biologists have established that most forms of directed nanoscopic, microscopic and, ultimately, macroscopic movements are powered by molecular motors from the dynein, myosin and kinesin superfamilies. These motor proteins literally walk, step by step, along polymeric filaments, carrying out essential tasks such as organelle transport. In the last few years biological molecular walkers have inspired the development of artificial systems that mimic aspects of their dynamics. Several DNA-based molecular walkers have been synthesised and shown to walk directionally along a track upon sequential addition of appropriate chemical fuels. In other studies, autonomous operation--i.e. DNA-walker migration that continues as long as a complex DNA fuel is present--has been demonstrated and sophisticated tasks performed, such as moving gold nanoparticles from place-to-place and assistance in sequential chemical synthesis. Small-molecule systems, an order of magnitude smaller in each dimension and 1000× smaller in molecular weight than biological motor proteins or the walker systems constructed from DNA, have also been designed and operated such that molecular fragments can be progressively transported directionally along short molecular tracks. The small-molecule systems can be powered by light or chemical fuels. In this critical review the biological motor proteins from the kinesin, myosin and dynein families are analysed as systems from which the designers of synthetic systems can learn, ratchet concepts for transporting Brownian substrates are discussed as the mechanisms by which molecular motors need to operate, and the progress made with synthetic DNA and small-molecule walker systems reviewed (142 references).  相似文献   

8.
Biomolecular motors, which convert chemical energy into mechanical work in intracellular processes, have high potential in bionanotechnology in vitro as molecular shuttles or nanoscale actuators. In this context, guided elongation of actin filaments in vitro could be used to lay tracks for myosin motor-based shuttles or to direct nanoscale actuators based on actin filament end-tracking motors. To guide the direction of filament polymerization on surfaces, microcontact printing was used to create tracks of chemically modified myosin, which binds to, but cannot exert force on, filaments. These filament-binding tracks captured nascent filaments from solution and guided the direction of their subsequent elongation. The effect of track width and protein surface density on filament alignment and elongation rate was quantified. These results indicate that microcontact printing is a useful method for guiding actin filament polymerization in vitro for biomolecular motor-based applications.  相似文献   

9.
The interaction between cytoskeletal filaments (e.g., actin filaments) and molecular motors (e.g., myosin) is the basis for many aspects of cell motility and organization of the cell interior. In the in vitro motility assay (IVMA), cytoskeletal filaments are observed while being propelled by molecular motors adsorbed to artificial surfaces (e.g., in studies of motor function). Here we integrate ideas that cytoskeletal filaments may be used as nanoscale templates in nanopatterning with a novel approach for the production of surface gradients of biomolecules and nanoscale topographical features. The production of such gradients is challenging but of increasing interest (e.g., in cell biology). First, we show that myosin-induced actin filament sliding in the IVMA can be approximately described as persistent random motion with a diffusion coefficient (D) given by a relationship analogous to the Einstein equation (D = kT/gamma). In this relationship, the thermal energy (kT) and the drag coefficient (gamma) are substituted by a parameter related to the free-energy transduction by actomyosin and the actomyosin dissociation rate constant, respectively. We then demonstrate how the persistent random motion of actin filaments can be exploited in conceptually novel methods for the production of actin filament density gradients of predictable shapes. Because of regularly spaced binding sites (e.g., lysines and cysteines) the actin filaments act as suitable nanoscale scaffolds for other biomolecules (tested for fibronectin) or nanoparticles. This forms the basis for secondary chemical and topographical gradients with implications for cell biological studies and biosensing.  相似文献   

10.
Protein molecular motors-perfected over the course of millions of years of evolution-play an essential role in moving and assembling biological structures. Recently chemists have been able to synthesize molecules that emulate in part the remarkable capabilities of these biomolecular motors (for extensive reviews see the recent papers: E. R. Kay, D. A. Leigh and F. Zerbetto, Angew. Chem., Int. Ed., 2006, 46, 72-191; W. R. Browne and B. L. Feringa, Nat. Nanotechnol., 2006, 1, 25-35; M. N. Chatterjee, E. R. Kay and D. A. Leigh, J. Am. Chem. Soc., 2006, 128, 4058-4073; G. S. Kottas, L. I. Clarke, D. Horinek and J. Michl, Chem. Rev., 2005, 105, 1281-1376; M. A. Garcia-Garibay, Proc. Natl. Acad. Sci., U. S. A., 2005, 102, 10771-10776)). Like their biological counterparts, many of these synthetic machines function in an environment where viscous forces dominate inertia-to move they must "swim in molasses". Further, the thermal noise power exchanged reversibly between the motor and its environment is many orders of magnitude greater than the power provided by the chemical fuel to drive directed motion. One might think that moving in a specific direction would be as difficult as walking in a hurricane. Yet biomolecular motors (and increasingly, synthetic motors) move and accomplish their function with almost deterministic precision. In this Perspective we will investigate the physical principles that govern nanoscale systems at the single molecule level and how these principles can be useful in designing synthetic molecular machines.  相似文献   

11.
Biological motors, driven by the conversion of chemical energy into mechanical energy, are much more efficient than man-made machines. The development of such efficient biomimetic motor systems in vitro is currently a vital need. However, great difficulty lies in how to integrate the sophisticated functions of the constituent components to obtain a performance as in the case of natural living systems. Based on 'active' and 'passive' self-organization principles, it has been demonstrated that the functions of motor protein systems can be integrated to obtain complex hierarchical structures that can work as actuators. Most of the works discussed here concern two-dimensional behavior, and recent works aim to explore the three-dimensional features of such artificial bio-mechanical systems.  相似文献   

12.
《Sensors and Actuators》1987,11(2):189-206
Magnetic motors and actuators dominate the large-scale motion domain. For smaller, micro-mechanical systems, electrostatic forces appear more attractive and promising than magnetic forces. Despite their distinguished history, electrostatic motors have found few practical applications because of the high voltages and mechanical accuracies traditionally required. This paper explores the design of electrostatic motors utilizing the advances in silicon technology. Using silicon wafers, and the associated insulators, conductors, anisotropic etching and fine-line photolithographic techniques, it is possible to develop large electrostatic fields with moderately high voltages (≈100 V) across insulators of well-controlled thickness. We present two preliminary designs and numerical simulations: one for a linear electrostatic motor and one for a rotary electrostatic motor.  相似文献   

13.
Split-protein reporters have emerged as a powerful methodology for imaging biomolecular interactions which are of much interest as targets for chemical intervention. Herein we describe a systematic evaluation of split-proteins, specifically the green fluorescent protein, beta-lactamase, and several luciferases, for their ability to function as reporters in completely cell-free systems to allow for the extremely rapid and sensitive determination of a wide range of biomolecular interactions without the requirement for laborious transfection, cell culture, or protein purification (12-48 h). We demonstrate that the cell-free split-luciferase system in particular is amenable for directly interrogating protein-protein, protein-DNA, and protein-RNA interactions in homogeneous assays with very high sensitivity (22-1800 fold) starting from the corresponding mRNA or DNA. Importantly, we show that the cell-free system allows for the rapid (2 h) identification of target-site specificity for protein-nucleic acid interactions and in evaluating antagonists of protein-protein and protein-peptide complexes circumventing protein purification bottlenecks. Moreover, we show that the cell-free split-protein system is adaptable for analysis of both protein-protein and protein-nucleic acid interactions in artificial cell systems comprising water-in-oil emulsions. Thus, this study provides a general and enabling methodology for the rapid interrogation of a wide variety of biomolecular interactions and their antagonists without the limitations imposed by current in vitro and in vivo approaches.  相似文献   

14.
Molecular shuttles based on the motor protein kinesin and microtubule filaments have the potential to extend the lab-on-a-chip paradigm to nanofluidics by enabling the active, directed and selective transport of molecules and nanoparticles. Based on experimentally determined parameters, in particular the trajectory persistence length of a microtubule gliding on surface-adhered kinesin motors, we developed a Monte-Carlo simulation, which models the transport properties of guiding structures, such as channels, rectifiers and concentrators, and reproduces the properties of several experimentally realized systems. Our tool facilitates the rational design of individual guiding structures as well as whole networks, and can be adapted to the simulation of other nanoscale transport systems.  相似文献   

15.
The transient self-assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out-of-equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host–guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]–guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation.  相似文献   

16.
Successful long-term storage of a "smart dust" device integrating biomolecular motors and complex protein assemblies has been demonstrated using freezing or lyophilization, which implies that fabrication and application can be separated even for complex bionanodevices.  相似文献   

17.
Synthetic manifestations of supramolecular chirality have extensively drawn inspiration from naturally occurring systems. Even though in biological systems conformational changes are dissipative, synthetic systems that change conformation under non‐equilibrium conditions have still not been established. Herein, we attempt to alleviate this scenario by reporting a synthetic supramolecular system that undergoes temporal changes in its helical conformation as an active system at the expense of a biologically relevant chemical fuel, ATP. Use of enzymes working in tandem provides transient and switchable helices with modular lifetime and stereomutation rates.  相似文献   

18.
The ability to induce and amplify motion at the molecular scale has seen tremendous progress ranging from simple molecular rotors to responsive materials. In the two decades since the discovery of light-driven rotary molecular motors, the development of these molecules has been extensive; moving from the realm of molecular chemistry to integration into dynamic molecular systems. They have been identified as actuators holding great potential to precisely control the dynamics of nanoscale devices, but integrating molecular motors effectively into evermore complex artificial molecular machinery is not trivial. Maximising efficiency without compromising function requires conscious and judicious selection of the structures used. In this perspective, we focus on the key aspects of motor design and discuss how to manipulate these properties without impeding motor integrity. Herein, we describe these principles in the context of molecular rotary motors featuring a central double bond axle and emphasise the strengths and weaknesses of each design, providing a comprehensive evaluation of all artificial light-driven rotary motor scaffolds currently present in the literature. Based on this discussion, we will explore the trajectory of research into the field of molecular motors in the coming years, including challenges to be addressed, potential applications, and future prospects.

Various families of light-driven rotary molecular motors and the key aspects of motor design are discussed. Comparisons are made between the strengths and weaknesses of each motor. Challenges, applications, and future prospects are explored.  相似文献   

19.
Using a controllable nanoengineered surface that alters the dynamics of filamentous actin (F-actin) adhesion, we studied the tunability of biomolecular surface attachment. By grafting aminated nanoparticles, NPs, with diameters ranging from 12 to 85 nm to a random copolymer film, precise control over surface roughness parameters is realized. The ability to selectively generate monodisperse or polydisperse features of varying size and areal density leads to immobilized, side-on wobbly, or end-on F-actin binding as characterized by total internal reflection fluorescence (TIRF) microscopy. The interaction between the surface and actin is explained by a worm-like chain model that balances the bending energy penalty required for actin to conform to topographical features with the electrostatic attraction engineered into the surface. A Myosin V motility assay demonstrates that electrostatically immobilized actin retains its ability to direct myosin motion, indicating that nanoengineered surfaces are attractive candidates for biomolecular device fabrication.  相似文献   

20.
Molecular motors capable of directional track-walking or rotation are abundant in living cells, and inspire the emerging field of artificial nanomotors. Some biomotors can convert 90% of free energy from chemical fuels into usable mechanical work, and the same motors still maintain a speed sufficient for cellular functions. This study exposed a new regime of universal optimization that amounts to a thermodynamically best working regime for molecular motors but is unfamiliar in macroscopic engines. For the ideal case of zero energy dissipation, the universally optimized working cycle for molecular motors is infinitely slow like Carnot cycle for heat engines. But when a small amount of energy dissipation reduces energy efficiency linearly from 100%, the speed is recovered exponentially due to Boltzmann's law. Experimental data on a major biomotor (kinesin) suggest that the regime of universal optimization has been largely approached in living cells, underpinning the extreme efficiency-speed trade-off in biomotors. The universal optimization and its practical approachability are unique thermodynamic advantages of molecular systems over macroscopic engines in facilitating motor functions. The findings have important implications for the natural evolution of biomotors as well as the development of artificial counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号