首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
可见光响应Bi2WO6薄膜的制备与光电化学性能   总被引:2,自引:0,他引:2  
采用非晶态配合物-提拉法在ITO导电玻璃基底上制备得到Bi2WO6薄膜. 采用FE-SEM、XRD、Raman、DRS、光电流响应谱、IPCE等手段, 研究了Bi2WO6薄膜的形貌、结构、光电性能以及薄膜结构与光电性能的关系. 结果表明, 450 ℃以上煅烧可以得到Bi2WO6结晶薄膜, 薄膜由沿(131)晶面趋向生长的Bi2WO6纳米颗粒组成, 颗粒的粒度随煅烧温度的升高而增大, 同时颗粒之间的间距也相应增大. ITO/Bi2WO6薄膜电极在可见光(λ>400 nm)照射下可以产生光电流, 光电流强度与光强度线性相关; 光电流强度和光电转换量子效率受Bi2WO6薄膜结构的影响, 通过控制薄膜的煅烧温度等制备条件, 可以提高薄膜光电极的光电转换量子效率.  相似文献   

2.
Hierarchical titanate nanostructures were hydrothermally synthesized in concentrated base solutions using commercial titania powders as starting materials. By varying the base concentration, nanowire arrays, flowers of nanosheets and nanotubes, and urchin‐like nanostructures of nanowires and nanotubes were sequentially fabricated. If the NaOH concentration was higher than 6 M , hydrated Na2Ti6O13 nanowire arrays, with nanowire diameters of 20–90 nm and an aspect ratio of 1100–5000, were produced at suitable reaction temperatures over a large area. In 10 M KOH solutions, aligned nanowires with a diameter of 30 nm and a lenght of 80 μm formed. In 4 M NaOH solutions, micrometer‐sized flowers of nanotubes and nanosheets formed. Reactions in 2 M NaOH solutions produced urchin‐like materials with a size of ca. 10 μm that were composed of nanotubes and nanowires. The adsorption behavior of the urchin‐like materials resembled macroporous materials with micropores. Since both base concentration and reaction temperature affected the reaction rate, the formation of various titanate nanostructures was proposed as a growth speed controlled process.  相似文献   

3.
This paper presents the characterization of TiO2 nanostructures obtained by low-voltage anodization using alternate current electrochemical microscopy (AC-SECM) and photoelectrochemical (PEC) measurements. TiO2 nanostructures were obtained from the exposure of titanium foils to several aqueous acidic solutions of hydrofluoric acid + phosphoric acid at potentials of 1 to 3 V. Scanning electron microscopy, X ray diffraction, and atomic force microscopy studies evidence the formation of a thin porous amorphous layer (<600 nm) with pore size in the range of 200–1,000 nm. By AC-SECM studies at different bias, we were able to confirm the unambiguous semiconducting properties of as-obtained porous titania films, as well as differences in surface roughness and conductivity in specimens obtained at both potentials. The difference in conductivity persists in air annealed samples, as demonstrated by electrochemical impedance spectroscopy and PEC measurements. Specimens obtained at 3 V show lower photocurrent and dark current than those obtained at 1 V, regardless of their larger conductivity, and we proposed it is due to differences on the oxide layer formed at the pore bottom.  相似文献   

4.
Multiwalled carbon nanotubes (MWCNTs) were incorporated into amorphous dye-doped titania gel by the sol?Cgel method at room temperature. The working electrodes were prepared by coating the ITO glass with the sol?Cgel titania precursor containing the dye and MWCNTs. The photoelectric conversion properties of the electrodes were examined by simple spectroscopic and electric measurements. The photocurrent spectrum originated from the absorption of the dye. The short circuit photocurrent was enhanced by adding a small amount of MWCNTs evenly to the amorphous dye-doped titania gel. The open circuit voltage was due to the semiconducting characteristics property of the titania gel. The experimental results indicated the electron transport from the dye excited states to the MWCNTs through the titania gel. The MWCNTs functioned as bridges between the titania and ITO. Steam treatment of the titania gel electrodes significantly increased the photoelectric performance due to crystallization of the titania and enhancement of the dye?Ctitania interaction forming the chelate complex on the titania particle surface.  相似文献   

5.
TiO2 nanotubes (TNTs) were successfully synthesized from different alkaline media (i.e., NaOH and KOH) by using a microwave hydrothermal process. The effects of different alkaline media on the formation of TiO2 nanotubes and their physicochemical properties were investigated. The phases of different TiO2 nanostructures were studied by using X-ray diffraction patterns. Morphologies of the nanostructures were observed with a transmission electron microscope. The optical properties of the nanostructures were evaluated through the absorption behavior using UV–Vis diffuse reflectance spectroscopy. The photocatalytic activities of the TiO2 nanostructures were evaluated by the degradation of methylene blue aqueous dye solution under the simulated solar light irradiation. Similarly, the photovoltaic efficiencies of the prepared samples were investigated by making photo-anode layers in the Dye Sensitized Solar Cells (DSSCs). The results revealed that in comparison to the single layered TiO2 nanostructures in the DSSC, creation of a double layer structure significantly enhanced the efficiency of DSSC.  相似文献   

6.
Alternating multilayer films composed of titania nanosheets and Zn porphyrins were prepared by use of a previously reported Langmuir-Blodgett film-transfer method in order to fabricate photoelectrochemical devices. Closely packed titania nanosheet monolayers on indium tin oxide (ITO), mica, and quartz surfaces strongly adsorbed cationic [5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrinatozinc]4+ (ZnTMPyP4+) by electrostatic interactions. The alternating deposition process afforded nanometer-scale multilayer films with the following structure: solid surface/(titania nanosheet/ZnTMPyP4+)n (n is the number of layers). The multilayer films were characterized by various physical measurements, including AFM, XRD, and UV-visible spectra. The visible-light irradiation of this multilayer film on an ITO electrode in the presence of triethanolamine as an electron donor yielded an anodic photocurrent. The action spectrum was consistent with the absorption spectrum of ZnTMPyP4+, which indicates that the photoexcitation of ZnTMPyP4+ is responsible for the photocurrent generation. However, the photocurrent density decreased with an increasing number of layers, which indicates that the harvesting of photoexcited electrons vertically through the titania nanosheets in the ITO/(titania nanosheet/ZnTMPyP4+)n structure was not efficient. To overcome this problem, the use of a lateral interlayer connection to all of the titania nanosheets with Ag paste was examined. As a result, a dramatic improvement in the photocurrent density was obtained. Thus, for efficient photocurrent generation with the titania nanosheet-ZnTMPyP4+ composite material, the lateral connection to all of the titania nanosheet layers is effective.  相似文献   

7.
A model incorporating a phase angle between an applied electric field and the motion of particles driven by it explains electrolyte-dependent pairwise particle motion near electrodes. The model, predicting that two particles aggregate when this phase angle is greater than 90 degrees but separate when the phase angle is less than 90 degrees , was based largely on contrasting behavior in two electrolytes (KOH and NaHCO3) used with indium tin oxide (ITO) electrodes. The present contribution expands the experimental evidence for this model to KOH, NaHCO3, NaOH, NH4OH, KCl, and H2CO3 solutions with Pt, as well as ITO electrodes. The phase angle correlation was verified in all cases. Comparisons of the model predictions to experimental data show that the sign and order of magnitude of rates of change in the separation distances between particle pairs are correctly predicted.  相似文献   

8.
Gold nanoparticles (GNPs) were deposited directly onto the surface of indium tin oxide (ITO) thin film-coated glass by electrochemical method. It was used as a photoanode in a photoelectrochemical (PEC) cell for sensitive detection of hydroquinone (HQ) at an applied bias potential of 0.15 V vs. saturated calomel electrode. This heterostructure showed dramatically enhanced PEC properties due to the introduction of the Au/ITO interface. Under the irradiation, the marked photocurrent response was observed at the GNPs/ITO photoelectrode compared with bare ITO electrode. The anodic photocurrent could be further largely enhanced by HQ. A new PEC strategy for sensitive detection of HQ at a relative low potential was developed. The linear range for HQ determination was 0.25 to 150 μM, with a detection limit of 0.1 μM. The sensitivity on the GNPs/ITO electrode at the irradiation was ~ 3.3 times higher than that in dark. These results demonstrate that the simple GNPs/ITO electrodes have great potential for PEC analysis application.  相似文献   

9.
The effect the current density, treatment time, surface pretreatment, and electrolyte composition have on the morphology of titania obtained via electrochemical treatment in such ionic liquids (ILs) as 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][NTf2] and 1-butyl-3-methylimidazolium chloride [BMIM]Cl is studied. The anodic formation of titania nanostructures in the form of nanotubes or nanorods is found to occur in times of up to 100 s. The role of water in the formation of these titania nanostructures is shown. Pretreatment has no effect on the morphology of the formed oxide. The formation of products that are poorly soluble in ILs (e.g., hydrated oxides) results in the emergence of a layer partially covering the open parts of nanotubes, preventing their further growth.  相似文献   

10.
聚天冬氨酸与钨酸钠复配对白铜B10的缓蚀作用   总被引:1,自引:0,他引:1  
应用光电化学的方法研究了两种环境友好型缓蚀剂聚冬天氨酸(PASP)和钨酸钠(Na2WO4)的单一配方及其复配对白铜B10在硼砂-硼酸缓冲溶液中的缓蚀作用援研究表明, 在光电流循环伏安测试中, 单一的PASP与Na2WO4均能够使B10表面Cu2O膜引起的p型光电流响应增大, 这说明缓蚀剂增大了Cu2O膜的厚度, 使B10的腐蚀速率减小. 单一的PASP与Na2WO4的最佳添加浓度分别为3和5 mg·L-1, 单一的Na2WO4比单一的PASP使p型光电流响应增大趋势更大. 若以总浓度为5 mg·L-1时对两者进行复配, 当PASP与Na2WO4的质量浓度比为1:1和1:3时, 两者复配比单一使用时的p型电流光响应都更大, B10的腐蚀更小, 即缓蚀剂的效果更好. 交流阻抗测试结果与光电化学测试相一致.  相似文献   

11.
Metal oxide nanostructures hold great potential for photovoltaic (PV), photoelectrochemical (PEC), and photocatalytic applications. Whereas thin films of various materials of both nanoparticle and nanorod morphologies have been widely investigated, there have been few inquiries into nanodisk structures. Here, we report the synthesis of ultrathin WO3 nanodisks using a wet chemical route with poly(ethylene glycol) (PEG) as a surface modulator. The reported nanodisk structure is based on the interaction of the nonionic 10000 g/mol PEG molecules with tungsten oxoanion precursors. The WO3 nanostructures formed are dominated by very thin disks with dimensions on the nanometer to micrometer scale. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the structures to have dimensions on the order of 350-1000 nm in length, 200-750 nm in width, and 7-18 nm in thickness and possessing textured single-crystalline features. A number of analytical techniques were used to characterize the WO3 nanodisks, including selected-area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), Raman scattering spectroscopy, UV-visible spectrophotometry, and cyclic voltammetry (CV). The growth of the WO3 nanodisks was inhibited in the [010] crystal direction, leading to ultrathin morphologies in the monoclinic crystal phase. The large flat surface area and high aspect ratio of the WO3 nanodisks are potentially useful in PEC cells for hydrogen production via direct water splitting, as has been demonstrated in a preliminary experiment with external bias.  相似文献   

12.
二氧化钛纳米管由于其特殊的结构和优异的性能,在很多领域都有着重要的应用前景。阳极氧化法是制备二氧化钛纳米管的一种主要方法。近来,在阳极氧化法中使用有机电解液来制备二氧化钛纳米管取得了非常显著的效果。与传统的水溶性电解液相比,其深宽比和光电转换效率有了很大的提高。本文主要介绍了二氧化钛纳米管的阳极氧化原理以及有机电解液在阳极氧化法中对二氧化钛纳米管生长过程的影响。  相似文献   

13.
A series of porous carbon materials with wide range of specific surface areas and different heteroatom contents had been prepared using polyaniline as carbon precursor and KOH as an activating agent. Effect of surface area and heteroatom of porous carbon materials on specific capacitance was investigated thoroughly in two typical aqueous KOH and organic 1-butyl-3- methylimidazolium tetrafluoroborate/acetonitirle electrolytes. The different trends of capacitance performance were observed in these two electrolytes. Electrochemical analyses suggested that the presence of faradaic interactions on heteroatom-enriched carbon materials in organic environment is less significant than that observed in aqueous electrolytes. Thus, in aqueous electrolyte, a balance between surface area and heteroatom content of activated porous carbon would be found to develop a supercapacitor with high energy density. In organic electrolyte, the capacitance performance of porous carbon is strongly dependent on the surface area. The results may be useful for the design of porous carbon-based supercapacitor with the desired capacitive performance in aqueous and organic electrolytes.  相似文献   

14.
Tungsten trixoide/titania (WO3-titania) composite thin films with W/Ti molar ratios of 100/0, 98/2, 96/4, 94/6 92/8 and 90/10 were prepared on fluorine-doped tin oxide conducting glass, and their electrochromic (EC) and photoelectrochromic (PEC) performances were investigated in this study. The composite thin films were synthesized by sol–gel process using peroxotungstic acid and titanium (IV) n-butoxide as the precursors. The surface morphology and composition of the composite thin films were characterized using scanning electron microscope with energy dispersive spectrometer. Electrochemical experiments with in situ spectroscopic measurement were employed to study the EC properties of the composite thin films. It was found that the presence of titania in the WO3 matrix might slightly decreases its EC performance. PEC cells using the composite thin films as the working electrode and a sputtered semitransparent platinum thin film on ITO as the counter electrode were fabricated and their PEC performances were investigated. The device using composite thin film prepared from sol solution with a W/Ti molar ratio of 96/4 exhibited the best PEC performance.  相似文献   

15.
Nanothread-based porous spongelike Ni3S2 nanostructures were synthesized directly on Ni foil by using a simple biomolecule-assisted method. By varying the experimental parameters, other novel Ni3S2 nanostructures could also be fabricated on the nickel substrate. The electrochemical hydrogen-storage behavior of these novel porous Ni3S2 nanostructures was investigated as an example of the potential properties of such porous materials. The thread-based porous spongelike Ni3S2 could electrochemically charge and discharge with the high capacity of 380 mAh g(-1) (corresponding to 1.4 wt % hydrogen in single-walled nanotubes (SWNT)). A novel two-charging-plateaux phenomenon was observed in the synthesized porous spongelike Ni3S2 nanostructures, suggesting two independent steps in the charging process. We have demonstrated that the morphology of the synthesized Ni3S2 nanostructures had a noticeable influence on their electrochemical hydrogen-storage capacity. This is probably due to the size and density of the pores as well as the microcosmic morphology of different nickel sulfide nanostructures. These novel porous Ni3S2 nanostructures should find wide applications in hydrogen storage, high-energy batteries, luminescence, and catalytic fields. This facile, environmentally benign, and solution-phase biomolecule-assisted method can be potentially extended to the preparation of other metal sulfide nanostructures on metal substrates, such as Cu, Fe, Sn, and Pb foils.  相似文献   

16.
The electrochemical synthesis of a copolymer electrolyte (PEO-PMMA) into titania nanotubes is described and studied. Compared with the electrochemical systems based on solid electrolytes deposited by top-down techniques, the copolymer/titania nanotube material reveals high electrochemical performance, opening new perspectives for the fabrication of 3D all-solid-state microbatteries.  相似文献   

17.
A PEC cell with nanostructured BiVO4 photoelectrode film presents outstanding azo dye degradation and simultaneous H2 production performance.  相似文献   

18.
Cu(OH)2 nanoneedle and nanotube arrays were electrochemically synthesized by anodization of a copper foil in an aqueous solution of KOH. The nanoneedles and nanotubes were constructed from nanosheets of Cu(OH)2. Controlling the electrochemical conditions can qualitatively modulate the lengths, amounts, and shapes of Cu(OH)2 nanostructures. The composition of as-prepared Cu(OH)2 nanostructures has been confirmed by X-ray diffraction and select-area electron diffraction. The influences of the KOH concentration of the aqueous electrolyte, the reaction temperature, and current density on the morphology of Cu(OH)2 nanostructures were investigated, and the formation mechanism of the nanostructures is discussed. Furthermore, Cu(OH)2 nanoneedles can be successfully transformed to CuO nanoneedles with little morphology change by heating. This work developed a simple, clean, and effective route for fabrication of large area Cu(OH)2 or CuO nanostructured films.  相似文献   

19.
Impedance spectroscopy, chronovoltammetry, chronopotentiometry, scanning electron microscopy, and atomic-force microscopy were used to examine the corrosion behavior in acid and alkaline media and the morphology of nickel coatings electrodeposited from acetate, tartrate, and isobutyrate electrolytes at a temperature of 20–25°C. Models describing the nickel corrosion processes in H2SO4 and NaOH solutions were suggested. It was found that nickel coatings formed from isobutyrate electrolytes have the highest corrosion resistance.  相似文献   

20.
Anodization of titanium in a fluorinated dimethyl sulfoxide (DMSO) and ethanol mixture electrolyte is investigated. The prepared anodic film has a highly ordered nanotube-array surface architecture. Using a 20 V anodization potential (vs Pt) nanotube arrays having an inner diameter of 60 nm and 40 nm wall thickness are formed. The overall length of the nanotube arrays is controlled by the duration of the anodization, with nanotubes appearing only after approximately 48 h; a 72 h anodization results in a nanotube array approximately 2.3 mum in length. The photoelectrochemical response of the nanotube-array photoelectrodes is studied using a 1 M KOH solution under both UV and visible (AM 1.5) illumination. Enhanced photocurrent density is observed for samples obtained in the organic electrolyte, with an UV photoconversion efficiency of 10.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号