首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The formation of heterodimers in mixtures of glycopeptide antibiotics has been detected by electrospray ionization mass spectrometry (ESI-MS), and dimerization constants have been determined. By using NMR spectroscopy, it has been shown that these heterodimers indeed exist in aqueous solution. The dimerization constants obtained by NMR spectroscopy are in good agreement with those determined by ESI-MS. Structural information on the heterodimer interface of some of the heterodimers is obtained by using two-dimensional NMR techniques and reveals that these heterodimers are similar in structure to the homodimers.  相似文献   

2.
The influence of spin—orbit and vibronic interactions upon the chiroptical properties of nearly degenerate dd transitions in metal complexes of pseudo-tetragonal symmetry is investigated. A model system is considered in which three nearly degenerate dd excited states are coupled via both spinorbit and vibronic interactions. Vibronic interactions among the three nearly degenerate dd electronic states are assumed to arise from a pseudo-Jahn—Teller (PJT) mechanism involving three different vibrational modes (each nontotally symmetric in the point group of the undistorted model system).A vibronic hamiltonian is constructed (for the excited states of the model system) which includes linear coupling terms in each of the three PJT-active vibrational modes as well as a linear coupling term in one totally symmetric mode of the system and a spin—orbit interaction term. Wavefunctions and eigenvalues for the spin—orbit/vibronic perturbed excited states. of the model system are obtained by diagonalizing this hamiltonian in a basis constructed of uncoupled vibrational and electronic (orbital and spin) wavefunctions.Rotatory strengths associated with transitions to vibronic levels of the perturbed system are calculated and “rotatory strength spectra” are computed assuming gaussian shaped vibronic spectral components. Calculations are carried out for a number of vibronic and spin—orbit coupling parameters and for various splitting energies between the interacting electronic states. The calculated results suggest that chiroptical spectra associated with transitions to a set of nearly degenerate dd excited states of a chiral transition metal complex cannot be interpreted directly without some consideration of the effects introduced by spin—orbit and vibronic perturbations. These perturbations can lead to substantial alterations in the sign patterns and intensity distributions of rotatory strength among vibronic levels derived from the interacting electronic states and it is generally not valid to assign specific features in the observed circular dichroism spectra to transitions between states with well-defined electronic (orbital and spin) identities.Our theoretical model is conservative with respect to the total (or net) rotatory strength associated with transitions to levels derived from the three interacting electronic states; the vibronic and spin—orbit coupling operators are operative only within this set of states. That is, the total (or net) rotatory strength associated with these transitions remains invariant to the vibronic and spin—orbit coupling parameters of the model.  相似文献   

3.
4.
Absorption and luminescence excitation spectra of Xe/CF(4) mixtures were studied in the vacuum UV region at high resolution using tunable synchrotron radiation. Pressure-broadened resonance bands and bands associated with dipole-forbidden states of the Xe atom due to collision-induced breakdown of the optical selection rules are reported. The spectra display in addition numerous satellite bands corresponding to transitions to vibrationally excited states of a Xe-CF(4) collisional complex. These satellites are located at energies of Xe atom transition increased by one quantum energy in the IR active v(3) vibrational mode of CF(4) (v(3) = 1281 cm(-1)). Satellites of both resonance and dipole-forbidden transitions were observed. Satellites of low lying resonance states are spectrally broad bands closely resembling in shape their parent pressure-broadened resonance bands. In contrast, satellites of dipole-forbidden states and of high lying resonance states are spectrally narrow bands (FWHM ~10 cm(-1)). The satellites of dipole-forbidden states are orders of magnitude stronger than transitions to their parent states due to collision-induced breakdown of the optical selection rules. These satellites are attributed to a coupling of dipole-forbidden and resonance states induced by the electric field of the transient CF(4) (v(3) = 0 ? v(3) = 1) dipole. Similar satellites are present in spectra of Xe/C(2)F(6) mixtures where these bands are induced by the IR active v(10) mode of C(2)F(6). Transitions to vibrationally excited states of Xe-CF(4)(C(2)F(6)) collision pairs were also observed in two-photon LIF spectra.  相似文献   

5.
《合成通讯》2013,43(13):2061-2066
ABSTRACT

Enantiomeric enrichment of racemic (p-iodophenyl)glycinol was achieved with various optically active organic acids. The scalemic mixtures were further resolved by entrainment with racemic crystals of the starting material. The pure enantiomers were recovered from the mother liquor; the crystalline—almost racemic—base was recycled.  相似文献   

6.
The development of molecularly imprinted chiral stationary phases has traditionally been limited by the need for a chiral pure template. Paradoxically, availability of a chiral pure template largely defeats the purpose of developing a chiral stationary phase. To solve this paradox, imprinting of scalemic and racemic template mixtures was investigated using both chiral (N-α-bismethacryloyl-l-alanine) and achiral (N,O-bisacrylamide ethanolamine) crosslinkers. Imprinting of scalemic mixtures provided polymers capable of partial separation of Boc-tyrosine enantiomers with virtually the same results when using either the chiral or achiral crosslinker. However, the chiral crosslinker was required for chiral differentiation by the racemic imprinted polymers which were evaluated in both batch rebinding and chromatographic modes. Batch rebinding analysis revealed intersecting binding isotherms for the L- and D-Boc-tyrosine, indicating bias for the D or L enantiomer is concentration dependent. Partial chromatographic separation was achieved by the racemic imprinted polymers providing variable D or L bias in equal probability over multiple replicates of polymer synthesis. Correlation of enantiomer bias with the batch rebinding results and optimization of HPLC parameters are discussed.  相似文献   

7.
We report the results of a model study of the influence of vibronic coupling involving non-totally symmetric vibrations and static crystal field interactions on the spectral properties of molecules with close-lying excited electronic states. The presented results suggests that “proximity effects” brought about by solvent perturbation arise from two sources: (i) alterations in the energy separation between vibronically coupled electronic states and (ii) crystal field mixing of the isolated molecular electronic states. It is shown that crystal field mixing leads to the breakdown of the vibronic coupling scheme for non-totally symmetric vibrations in isolated molecules. This breakdown is shown to have a very pronounced effect on the spectral properties of molecules with close-lying excited electronic states. The effect of environmental perturbations on excited state frequencies, the breakdown of symmetry and polarization selection rules, and vibrational intensity distributions is discussed.  相似文献   

8.
Ab initio configuration interaction wavefunctions and energies are reported for the ground and low-lying excited doublet states of the anion radicals of ethyl chlorophyllide a (Et-Chl a -) and ethyl pheophorbide a (Et-Pheo a -), and are employed in a comparative analysis of their respective electronic absorption spectra.
Strong similarities exist between the first five computed excited states of both molecules, providing no distinguishing features in the electronic absorption spectra below 20000 cm-. Their ground state charge and spin density distributions are also very similar, and there is negligible spin density predicted on the magnesium atom in Et-Chl a- .
The Soret bands of both molecules are predicted to arise from intense transitions to several closely-spaced higher excited states, and the calculations indicate that there are significant differences in the number and composition of these states in the two molecules. It is suggested that these differences may provide a means of distinguishing between the two molecules using resonance Raman spectroscopy.  相似文献   

9.
An attempt for a theoretical treatment of radiationless transitions from excited charge-transfer states in molecular complexes is made within the framework of the statistical limit of radiationless transitions theory. This work deals with the S1 → S0 internal conversion in charge-transfer complexes of tetracyanoethylene (an electron acceptor) with benzene and toluene and their perdeuterated analogues. A dominant role of the high-frequency totally symmetric intramolecular vibrational modes in the nonradiative decay of excited charge-transfer states is assumed (this was inferred from the experimentally observed deuterium isotope effect on radiationless S1 → S0 transitions). Calculated absolute rate constants for internal conversion are found to be in good agreement with experimental ones. The results of our calculations reflect very well the observed moderate deuterium isotope effect.  相似文献   

10.
In this paper, we present the absorption properties of a series of bis-triarylamino-[2.2]paracyclophane diradical dications. The localized pi-pi and the charge-transfer (CT) transitions of these dications are explained and analyzed by an exciton coupling model that also considers the photophysical properties of the "monomeric" triarylamine radical cations. Together with AM1-CISD-calculated transition moments, experimental transition moments and transition energies of the bis-triarylamine dications were used to calculate electronic couplings by a generalized Mulliken-Hush (GMH) approach. These couplings are a measure for interactions of the excited mixed-valence CT states. The modification of the diabatic states reveals similarities of the GMH three-level model and the exciton coupling model. Comparison of the two models shows that the transition moment between the excited mixed-valence states mu(ab) of the dimer equals the dipole moment difference Delta of the ground and the excited bridge state of the corresponding monomer.  相似文献   

11.
This paper contains a theoretical analysis of orientation and alignment created in direct, collision-induced transitions among atomic states with arbitrary angular momentum. Using the natural coordinate frame, general propensity rules are derived in the velocity region of maximum transition probability and their range of validity is investigated. The predictions are tested and illustrated by nine-state calculations for Li(n=2, 3) transitions in Li-He collisions.  相似文献   

12.
《Chemical physics letters》1986,132(2):147-153
An experiment is outlined for measuring the small energy difference between two enantiomers due to the parity-violating weak neutral current perturbation. The method is based on the violation of the selection rules for the time evolution of states of well defined initial parity in isolated molecules. It could confirm or reject recent quantitative theoretical estimates of parity-violating energy differences.  相似文献   

13.
Excited state mixed valence (ESMV) occurs in molecules in which the ground state has a symmetrical charge distribution but the excited state possesses two or more interchangeably equivalent sites that have different formal oxidation states. Although mixed valence excited states are relatively common in both organic and inorganic molecules, their properties have only recently been explored, primarily because their spectroscopic features are usually overlapped or obscured by other transitions in the molecule. The mixed valence excited state absorption bands of 2,3-di-p-anisyl-2,3-diazabicyclo[2.2.2]octane radical cation are well-separated from others in the absorption spectrum and are particularly well-suited for detailed analysis using the ESMV model. Excited state coupling splits the absorption band into two components. The lower energy component is broader and more intense than the higher energy component. The absorption bandwidths are caused by progressions in totally symmetric modes, and the difference in bandwidths is caused by the coordinate dependence of the excited state coupling. The Raman intensities obtained in resonance with the high and low energy components differ significantly from those expected based on the oscillator strengths of the bands. This unexpected observation is a result of the excited state coupling and is explained by both the averaging of the transition dipole moment orientation over all angles for the two types of spectroscopies and the coordinate-dependent coupling. The absorption spectrum is fit using a coupled two-state model in which both symmetric and asymmetric coordinates are included. The physical meaning of the observed resonance Raman intensity trends is discussed along with the origin of the coordinate-dependent coupling. The well-separated mixed valence excited state spectroscopic components enable detailed electronic and resonance Raman data to be obtained from which the model can be more fully developed and tested.  相似文献   

14.
The D(1)-D(0) transitions of diphenylmethyl (DPM) and chlorodiphenylmethyl (CDPM) radicals were studied by laser induced fluorescence (LIF) spectroscopy in a supersonic jet. Laser induced fluorescence excitation and dispersed fluorescence (DF) spectra were obtained for DPM and CDPM radicals produced by ArF excimer laser (193 nm) photolyses of their chlorides. With the aid of the density functional theory (DFT) calculation, vibronic bands are assigned by comparing the observed LIF excitation spectra of the jet-cooled radicals with the single vibronic level DF spectra. Low-frequency vibrations of 55 and 53 cm(-1) in the ground and excited states, respectively, are assigned to the symmetric phenyl torsional mode of the DPM radical. The geometries of DPM in the ground and excited states are discussed with regards to observed spectra and DFT calculations. Similarly for the CDPM radical, symmetric phenyl torsional and Ph-C-Ph bending modes are assigned and the halogen-substitution effect in equilibrium geometry is discussed.  相似文献   

15.
High-resolution translational-energy spectroscopy (up to 0.1 eV) has been carried out on 8
V beams of NO? and NO2?. Several features in the spectrum of NO4 are assigned to the transitions within the triplet manifold of this ion. The observed transitions originate in several excited electronic states, indicating long lifetimes (> 10 μs) for the states involved. Two electronic transitions in NO2' have been observed at low energies which are attributed to excitations to the first two excited states of this ion.  相似文献   

16.
Plummer EA  Zink JI 《Inorganic chemistry》2006,45(17):6556-6558
Mixed valence in the lowest-energy metal-to-ligand charge-transfer excited state of di-(4-acetylpyridine)tetraammineruthenium(II) complexes is defined and analyzed. The excited state has two interchangeably equivalent ligands with different oxidation states. The electronic absorption band energies, selection rules, and bandwidths are analyzed quantitatively in terms of the signs and orientations of the transition dipole moments, sign and magnitude of the coupling, and resonance Raman analysis of displaced normal modes.  相似文献   

17.
Propensity rules for the rotational quantum number dependence of cross sections for CO2 collisions with atoms are predicted to have subtle characteristics for transitions involving levels in excited vibrational angular momentum states.  相似文献   

18.
Oxovanadium(IV) phthalocyanines (VOPcs) with a single‐handed rotation have been prepared, and their right‐ and left‐handed enantiomers resolved on a chiral HPLC column. These enantiomers gave circular dichroism (CD) spectra of opposite signs; the correlation between the CD sign and conformation was obtained by time‐dependent density functional theory (TDDFT) calculations: an enantiomer showing a negative sign in the Q band was suggested to be the right‐handed conformer viewing from the axial oxygen side, whereas that giving a positive CD sign was assigned to the left‐handed conformer. Although silicon phthalocyanines (SiPcs) with two different alkoxy axial ligands have been resolved similarly, the absence of a meaningful CD difference probably reflects the flat character of the SiPc plane compared to the VOPc plane. Changes in the Q‐band CD, depending on the relative orientation of the peripheral substituents, have been worked out theoretically and the origin of the chiroptical properties is discussed.  相似文献   

19.
High resolution FTIR spectra have been recorded in the region 250-770 cm(-1) using synchrotron radiation and over 2000 transitions to the ν(8) and ν(12) states of the short lived species ketenimine have been assigned. Ground state combination differences combined with published microwave transitions were used to refine the constants for the ground vibrational state. Rotational and centrifugal distortion parameters for the v(8) = 1 and v(12) = 1 levels were determined by co-fitting transitions, and treating a strong a-axis Coriolis interaction. Selection rules for the observed ν(12) transitions indicate that they arise solely from "perturbation allowed" intensity resulting from this Coriolis interaction.  相似文献   

20.
Intramolecular vibrational energy redistribution (IVR) of the NH2 symmetric and asymmetric stretching vibrations of jet-cooled aniline has been investigated by picosecond time-resolved IR-UV pump-probe spectroscopy. A picosecond IR laser pulse excited the NH2 symmetric or asymmetric stretching vibration of aniline in the electronic ground state and the subsequent time evolutions of the excited level as well as redistributed levels were observed by a picosecond UV pulse. The IVR lifetimes for symmetric and asymmetric stretches were obtained to be 18 and 34 ps, respectively. In addition, we obtained the direct evidence that IVR proceeds via two-step bath states; that is, the NH2 stretch energy first flows into the doorway state and the energy is further dissipated into dense bath states. The rate constants of the second step were estimated to be comparable to or slower than those of the first step IVR. The relaxation behavior was compared with that of IVR of the OH stretching vibration of phenol [Y. Yamada, T. Ebata, M. Kayano, and M. Mikami J. Chem. Phys. 120, 7400 (2004)]. We found that the second step IVR process of aniline is much slower than that of phenol, suggesting a large difference of the "doorway state increasing the dense bath states" anharmonic coupling strength between the two molecules. We also observed IVR of the CH stretching vibrations, which showed much faster IVR behavior than that of the NH2 stretches. The fast relaxation is described by the interference effect, which is caused by the coherent excitation of the quasistationary states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号