首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chemistry & biology》1996,3(7):561-566
Background: The Rhizobial oxygen sensor FixL is a hemoprotein with kinase activity. On binding of strong-field ligands, a change of the ferrous or ferric heme iron from high to low spin reversibly inactivates the kinase. This spin-state change and other information on the heme pocket have been inferred from enzymatic assays, absorption spectra and mutagenesis studies. We set out to investigate the spin-state of the FixL heme and to identify the hyperfine-shifted heme-proton signals by NMR spectroscopy.Results: Using one-dimensional N MR we directly observed the high- and low-spin nature of the met- and cyanomet-FixL heme domain, respectively. We determined the hyperfine-shifted 1H-NMR signals of the heme and the proximal histidine by one- and two-dimensional spectroscopy and note the absence of distal histidine signals.Conclusions: These findings support the spin-state mechanism of FixL regulation. They establish that the site of heme coordination is a histidine residue and strongly suggest that a distal histidine is absent. With a majority of the heme resonances identified, one- and two-dimensional NMR techniques can be extended to provide structural and mechanistic information about the residues that line the heme pocket.  相似文献   

2.
3.
New, reconstituted horse heart myoglobins possessing a hydrophobic domain at the terminal of the two heme propionate side chains were constructed. The O2 and CO bindings for the reconstituted deoxymyoglobins were examined in detail by laser flash photolysis and stopped-flow rapid mixing techniques. The artificially created domain worked as a barrier against exogenous ligand penetration into the heme pocket, whereas the bound O2 was stabilized in the reconstituted myoglobin as well as in the native one. In contrast, the CO dissociation rate for the reconstituted myoglobin increased by 20-fold compared to the native protein, suggesting that the incorporation of the hydrophobic domain onto the heme pocket perturbs the distal-site structure of the reconstituted myoglobin. As a result, the substantial ligand selectivity for the reconstituted myoglobin significantly increases in favor of O2 over CO with the M' value (= KCO/KO2) of 0.88, whereas, to the best of our knowledge, there is no myoglobin mutant in which the O2 affinity exceeds the CO one. The present work concludes that the O2 selectivity of myoglobin over CO is markedly improved by chemically modifying the heme propionates without any mutation of the amino acid residues in the distal site.  相似文献   

4.
Heme proteins bind the gaseous ligands XO (X = C, N, O) via backbonding from Fe d(pi) electrons. Backbonding is modulated by distal interactions of the bound ligand with the surrounding protein and by variations in the strength of the trans proximal ligand. Vibrational modes associated with FeX and XO bond stretching coordinates report on these interactions, but the interpretive framework developed for CO adducts, involving anticorrelations of nuFeC and nuCO, has seemed not to apply to NO adducts. We have now obtained an excellent anticorrelation of nuFeN and nuNO, via resonance Raman spectroscopy on (N-methylimidazole)Fe(II)TPP-Y(NO), where TPP-Y is tetraphenylporphine with electron-donating or -withdrawing substituents, Y, that modulate the backbonding; the problem of laser-induced dissociation of the axial base was circumvented by using frozen solutions. New data are also reported for CO adducts. The anticorrelations are supported by DFT calculations of structures and spectra. When protein data are examined, the NO adducts show large deviations from the modeled anticorrelation when there are distal H-bonds or positive charges. These deviations are proposed to result from closing of the FeNO angle due to a shift in the valence isomer equilibrium toward the Fe(III)(NO-) form, an effect that is absent in CO adducts. The differing vibrational patterns of CO and NO adducts provide complementary information with respect to protein interactions, which may help to elucidate the mechanisms of ligand discrimination and signaling in heme sensor proteins.  相似文献   

5.
The rebinding kinetics of CO to protoheme (FePPIX) in the presence and absence of a proximal imidazole ligand reveals the magnitude of the rebinding barrier associated with proximal histidine ligation. The ligation states of the heme under different solvent conditions are also investigated using both equilibrium and transient spectroscopy. In the absence of imidazole, a weak ligand (probably water) is bound on the proximal side of the FePPIX-CO adduct. When the heme is encapsulated in micelles of cetyltrimethylammonium bromide (CTAB), photolysis of FePPIX-CO induces a complicated set of proximal ligation changes. In contrast, the use of glycerol-water solutions leads to a simple two-state geminate kinetic response with rapid (10-100 ps) CO recombination and a geminate amplitude that can be controlled by adjusting the solvent viscosity. By comparing the rate of CO rebinding to protoheme in glycerol solution with and without a bound proximal imidazole ligand, we find the enthalpic contribution to the proximal rebinding barrier, H(p), to be 11 +/- 2 kJ/mol. Further comparison of the CO rebinding rate of the imidazole bound protoheme with the analogous rate in myoglobin (Mb) leads to a determination of the difference in their distal free energy barriers: DeltaG(D) approximately 12 +/- 1 kJ/mol. Estimates of the entropic contributions, due to the ligand accessible volumes in the distal pocket and the xenon-4 cavity of myoglobin ( approximately 3 kJ/mol), then lead to a distal pocket enthalpic barrier of H(D) approximately 9 +/- 2 kJ/mol. These results agree well with the predictions of a simple model and with previous independent room-temperature measurements of the enthalpic MbCO rebinding barrier (18 +/- 2 kJ/mol).  相似文献   

6.
Specific sensing of gas molecules such as CO, NO, and O2 is a unique function of gas sensory hemoproteins, while hemoproteins carry out a wide variety of functions such as oxygen storage/transport, electron transfer, and catalysis as enzymes. It is important in gas sensory proteins that the heme domain not only recognizes its target molecule but also discriminates against other gases having similar molecular structures. Coordination of a target molecule to the heme is assumed to alter the protein conformation in the vicinity of heme, and the conformation change is propagated to the effector domain where substrate turnover, DNA binding, or interaction with a signal transduction protein is performed differently than the binding of other gases. To understand the appearance of such a specificity, we focus our attention on the ligand-protein interactions in the distal side of heme. In practice, the metal-ligand vibrations as well as internal modes of ligand and heme are measured with resonance Raman spectroscopy for wild-type and some mutant proteins with full-length or limited sensory regions. On the basis of such observations together with the knowledge currently available, we discuss the mechanism of specific sensing of a diatomic molecule in gas sensory proteins.  相似文献   

7.
8.
Cytochromes c' are pentacoordinate heme proteins with sterically hindered distal sites that bind NO and CO but do not form stable complexes with O(2). Removal of distal pocket steric hindrance via a Leu→Ala mutation yields favorable O(2) binding (K(d) ~49 nM) without apparent H-bond stabilization of the Fe-O(2) moiety, as well as an extremely high distal heme-NO affinity (K(d) ~70 fM). The native Leu residue inhibits distal coordination of diatomic ligands by decreasing k(on) as well as increasing k(off). The connection between distal steric constraints, k(off) values, and distal to proximal heme-NO conversion is discussed.  相似文献   

9.
The internal cavity matrix of globins plays a key role in their biological function. Previous studies have already highlighted the plasticity of this inner network, which can fluctuate with the proteins breathing motion, and the importance of a few key residues for the regulation of ligand diffusion within the protein. In this Article, we combine all-atom molecular dynamics and coarse-grain Brownian dynamics to establish a complete mechanical landscape for six different globins chain (myoglobin, neuroglobin, cytoglobin, truncated hemoglobin, and chains α and β of hemoglobin). We show that the rigidity profiles of these proteins can fluctuate along time, and how a limited set of residues present specific mechanical properties that are related to their position at the frontier between internal cavities. Eventually, we postulate the existence of conserved positions within the globin fold, which form a mechanical nucleus located at the center of the cavity network, and whose constituent residues are essential for controlling ligand migration in globins.  相似文献   

10.
13C NMR spectroscopic studies have been conducted with the hydroxide complex of Pseudomonas aeruginosa heme oxygenase (Fe(III)-OH), where OH(-) has been used as a model of the OOH(-) ligand to gain insights regarding the elusive ferric hydroperoxide (Fe(III)-OOH) intermediate in heme catabolism at ambient temperatures. Analysis of the heme core carbon resonances revealed that the coordination of hydroxide in the distal site of the enzyme results in the formation of at least three populations of Fe(III)-OH complexes with distinct electronic configurations and nonplanar ring distortions that are in slow exchange relative to the NMR time scale. The most abundant population exhibits a spin crossover between S = (1)/(2) and S = (3)/(2) spin states, and the two less abundant populations exhibit pure, S = (3)/(2) and S = (1)/(2), (d(xy)())(1) electronic configurations. We propose that the highly organized network of water molecules in the distal pocket of heme oxygenase, by virtue of donating a hydrogen bond to the coordinated hydroxide ligand, lowers its ligand field strength, thereby increasing the field strength of the porphyrin (equatorial) ligand, which results in nonplanar deformations of the macrocycle. This tendency to deform from planarity, which is imparted by the ligand field strength of the coordinated OH(-), is likely reinforced by the flexibility of the distal pocket in HO. These findings suggest that if the ligand field strength of the coordinated OOH(-) in heme oxygenase is modulated in a similar manner, the resultant large spin density at the meso carbons and nonplanar deformations of the pophyrin ring prime the macrocycle to actively participate in its own hydroxylation.  相似文献   

11.
Ligand binding and substitution reactions are important for metalloprotein folding and function. The heme sensor of a methyl-accepting chemotaxis GSU0935 is a c-type cytochrome from the bacterium Geobacter sulfurreducens. The heme domain switches one of its axial ligands from H(2)O to a low-spin ligand, presumably Met, upon reduction. The study analyzes the stability and folding kinetics of the ferric domain. Guanidine hydrochloride denaturation yields the low-spin heme species arising from coordination of the ferric heme by non-native His residues. The population of the low-spin species further increases and then declines during protein refolding. Kinetics and mutational effects suggest that His54, from the N-terminal region of the domain, is the transient ligand to the heme. The capture and release of a non-native ligand within the compact partially-folded structures illustrates the flexibility of the heme environment in GSU0935, which may relate to the domain sensor function.  相似文献   

12.
Human serum albumin (HSA), the most prominent protein in blood plasma, is able to bind a wide range of endogenous and exogenous compounds. Among the endogenous ligands, HSA is a significant transporter of heme, the heme-HSA complex being present in blood plasma. Drug binding to heme-HSA affects allosterically the heme affinity for HSA and vice versa. Heme-HSA, heme, and their complexes with ibuprofen have been characterized by electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy. Comparison of the results for the heme and heme-HSA systems has provided insight into the structural consequences on the heme pocket of ibuprofen binding. The pentacoordinate tyrosine-bound heme coordination of heme-HSA, observed in the absence of ibuprofen, becomes hexacoordinate low spin upon ibuprofen binding, and heme dissociates at increasing drug levels. The electronic absorption spectrum and nu(Fe-CO)/nu(CO) vibrational frequencies of the CO-heme-HSA-ibuprofen complex, together with the observation of a Fe-His Raman mode at 218 cm(-1) upon photolysis of the CO complex and the low spin EPR g values indicate that a His residue is one of the low spin axial ligands, the sixth ligand probably being Tyr161. The only His residue in the vicinity of the heme Fe atom is His146, 9 A distant in the absence of the drug. This indicates that drug binding to heme-HSA results in a significant rearrangement of the heme pocket, implying that the conformational adaptability of HSA involves more than the immediate vicinity of the drug binding site. As a whole, the present spectroscopic investigation supports the notion that HSA could be considered as the prototype of monomeric allosteric proteins.  相似文献   

13.
The effect of internal and applied external electric fields on the vibrational stretching frequency for bound CO (nu(CO)) in myoglobin mutants was studied using density functional theory. Geometry optimization and frequency calculations were carried out for an imidazole-iron-porphine-carbonmonoxy adduct with various small molecule hydrogen-bonding groups. Over 70 vibrational frequency calculations of different model geometries and hydrogen-bonding groups were compared to derive overall trends in the C-O stretching frequency (nu(CO)) in terms of the C-O bond length and Mulliken charge. Simple linear functions were derived to predict the Stark tuning rate using an approach analogous to the vibronic theory of activation.(1) Potential energy calculations show that the strongest interaction occurs for C-H or N-H hydrogen bonding nearly perpendicular to the Fe-C-O bond axis. The calculated frequencies are compared to the structural data available from 18 myoglobin crystal structures, supporting the hypothesis that the vast majority of hydrogen-bonding interactions with CO occur from the side, rather than the end, of the bound CO ligand. The nu(CO) frequency shifts agree well with experimental frequency shifts for multiple bands, known as A states, and site-directed mutations in the distal pocket of myoglobin. The model calculations quantitatively explain electrostatic effects in terms of specific hydrogen-bonding interactions with bound CO in heme proteins.  相似文献   

14.
The rebinding kinetics of NO to the heme iron of myoglobin (Mb) is investigated as a function of temperature. Below 200 K, the transition-state enthalpy barrier associated with the fastest (approximately 10 ps) recombination phase is found to be zero and a slower geminate phase (approximately 200 ps) reveals a small enthalpic barrier (approximately 3 +/- 1 kJ/mol). Both of the kinetic rates slow slightly in the myoglobin (Mb) samples above 200 K, suggesting that a small amount of protein relaxation takes place above the solvent glass transition. When the temperature dependence of the NO recombination in Mb is studied under conditions where the distal pocket is mutated (e.g., V68W), the rebinding kinetics lack the slow phase. This is consistent with a mechanism where the slower (approximately 200 ps) kinetic phase involves transitions of the NO ligand into the distal heme pocket from a more distant site (e.g., in or near the Xe4 cavity). Comparison of the temperature-dependent NO rebinding kinetics of native Mb with that of the bare heme (PPIX) in glycerol reveals that the fast (enthalpically barrierless) NO rebinding process observed below 200 K is independent of the presence or absence of the proximal histidine ligand. In contrast, the slowing of the kinetic rates above 200 K in MbNO disappears in the absence of the protein. Generally, the data indicate that, in contrast to CO, the NO ligand binds to the heme iron through a "harpoon" mechanism where the heme iron out-of-plane conformation presents a negligible enthalpic barrier to NO rebinding. These observations strongly support a previous analysis (Srajer et al. J. Am. Chem. Soc. 1988, 110, 6656-6670) that primarily attributes the low-temperature stretched exponential rebinding of MbCO to a quenched distribution of heme geometries. A simple model, consistent with this prior analysis, is presented that explains a variety of MbNO rebinding experiments, including the dependence of the kinetic amplitudes on the pump photon energy.  相似文献   

15.
The dynamics of processes relevant to chemistry and biophysics on rough free energy landscapes is investigated using a recently developed algorithm to solve the Smoluchowski equation. Two different processes are considered: ligand rebinding in MbCO and protein folding. For the rebinding dynamics of carbon monoxide (CO) to native myoglobin (Mb) from locations around the active site, the two-dimensional free energy surface (FES) is constructed using extensive molecular dynamics simulations. The surface describes the minima in the A state (bound MbCO), CO in the distal pocket and in the Xe4 pocket, and the transitions between these states and allows to study the diffusion of CO in detail. For the folding dynamics of protein G, a previously determined two-dimensional FES was available. To follow the diffusive dynamics on these rough free energy surfaces, the Smoluchowski equation is solved using the recently developed hierarchical discrete approximation method. From the relaxation of the initial nonequilibrium distribution, experimentally accessible quantities such as the rebinding time for CO or the folding time for protein G can be calculated. It is found that the free energy barrier for CO in the Xe4 pocket and in the distal pocket (B state) closer to the heme iron is approximately 6 kcal/mol which is considerably larger than the inner barrier which separates the bound state and the B state. For the folding of protein G, a barrier of approximately 10 kcal/mol between the unfolded and the folded state is consistent with folding times of the order of milliseconds.  相似文献   

16.
Complexing an iron protoporphyrin IX into a genetically engineered heme pocket of recombinant human serum albumin (rHSA) generates an artificial hemoprotein, which can bind O2 in much the same way as hemoglobin (Hb). We previously demonstrated a pair of mutations that are required to enable the prosthetic heme group to bind O2 reversibly: (i) Ile-142-->His, which is axially coordinated to the central Fe2+ ion of the heme, and (ii) Tyr-161-->Phe or Leu, which makes the sixth coordinate position available for ligand interactions [I142H/Y161F (HF) or I142H/Y161L (HL)]. Here we describe additional new mutations designed to manipulate the architecture of the heme pocket in rHSA-heme complexes by specifically altering distal amino acids. We show that introduction of a third mutation on the distal side of the heme (at position Leu-185, Leu-182, or Arg-186) can modulate the O2 binding equilibrium. The coordination structures and ligand (O2 and CO) binding properties of nine rHSA(triple mutant)-heme complexes have been physicochemically and kinetically characterized. Several substitutions were severely detrimental to O2 binding: for example, Gln-185, His-185, and His-182 all generated a weak six-coordinate heme, while the rHSA(HF/R186H)-heme complex possessed a typical bis-histidyl hemochrome that was immediately autoxidized by O2. In marked contrast, HSA(HL/L185N)-heme showed very high O2 binding affinity (P1/2O2 1 Torr, 22 degrees C), which is 18-fold greater than that of the original double mutant rHSA(HL)-heme and very close to the affinities exhibited by myoglobin and the high-affinity form of Hb. Introduction of Asn at position 185 enhances O2 binding primarily by reducing the O2 dissociation rate constant. Replacement of polar Arg-186 with Leu or Phe increased the hydrophobicity of the distal environment, yielded a complex with reduced O2 binding affinity (P1/2O2 9-10 Torr, 22 degrees C), which nevertheless is almost the same as that of human red blood cells and therefore better tuned to a role in O2 transport.  相似文献   

17.
The distal hydrogen bond (H‐bond) in dioxygen‐binding proteins is crucial for the discrimination of O2 with respect to CO or NO. We report the preparation and characterization of a series of ZnII porphyrins, with one of three meso‐phenyl rings bearing both an alkyl‐tethered proximal imidazole ligand and a heterocyclic distal H‐bond donor connected by a rigid acetylene spacer. Previously, we had validated the corresponding CoII complexes as synthetic model systems for dioxygen‐binding heme proteins and demonstrated the structural requirements for proper distal H‐bonding to CoII‐bound dioxygen. Here, we systematically vary the H‐bond donor ability of the distal heterocycles, as predicted based on pKa values. The H‐bond in the dioxygen adducts of the CoII porphyrins was directly measured by Q‐band Davies‐ENDOR spectroscopy. It was shown that the strength of the hyperfine coupling between the dioxygen radical and the distal H‐atom increases with enhanced acidity of the H‐bond donor.  相似文献   

18.
Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-vis spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions but reduced the heme iron to the ferrous state, as shown by the formation of a ferrous CO complex. Under aerobic conditions, the selenolate ligand but not the thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect.  相似文献   

19.
Tryptophan 2,3-dioxygenase (TDO) is a heme-dependent enzyme that catalyzes the oxidative degradation of L-tryptophan (L-Trp) to N-formylkynurenine (NFK). A highly conserved histidine residue in the distal heme pocket has attracted great attention in the mechanistic studies of TDO. However, a consensus has not been reached regarding whether and how this distal histidine plays a catalytic role after substrate binding. In this study, three mutant proteins, H72S, H72N, and Q73F were generated to investigate the function of the distal histidine residue in Cupriavidus metallidurans TDO (cmTDO). Spectroscopic characterizations, enzymatic kinetic analysis, and chemical rescue assays were employed to study the biochemical properties of the wild-type enzyme and the mutant proteins. Rapid kinetic methods were utilized to explore the molecular basis for the observed stimulation of catalytic activity by 2-methylimidazole in the His72 variants. The results indicate that the distal histidine plays multiple roles in cmTDO. First, His72 contributes to but is not essential for substrate binding. In addition, it shields the heme center from nonproductive binding of exogenous small ligand molecules (i.e., imidazole and its analogs) via steric hindrance. Most importantly, His72 participates in the subsequent chemical catalytic steps after substrate binding possibly by providing H-bonding interactions to the heme-bound oxygen.  相似文献   

20.
Interconversion dynamics of the ligand in the primary docking site of myoglobin (Mb) and hemoglobin (Hb) in trehalose and glycerol/D2O mixtures at 283 K was investigated by probing time-resolved vibrational spectra of CO photolyzed from these proteins. The interconversion dynamics in viscous media are similar to those in aqueous solution, indicating that it is minimally coupled to the solvent-coupled large-scale protein motion. Interconversion rates in the heme pocket of Hb in water solution are slower than those of Mb in trehalose glass, suggesting that the interconversion barrier in Hb is intrinsically higher than that in Mb and is not modified by the solvent viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号