首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The relationship between the transported ion current and the cathodic arc current is determined in a vacuum arc plasma source equipped with a curved magnetic filter. Our results suggest that the outer and inner walls of the duct interact with the plasma independently. The duct magnetic field is a critical factor of the plasma output. The duct transport efficiency is to maximize at a value of bias plate voltage in the range +10 V to +20 V, and independent (within our limit of measurement) of the magnetic field strength in the duct. The plasma flux is composed of two components: a diffusion flux in the transverse direction due to particle collisions, and a drift flux due to the ion inertia. The inner wall of the magnetic duct sees only the diffusion flux while the outer wall receives both fluxes. Thus, applying a positive potential to the outer duct wall can reflect the ions and increase the output current. Our experimental data also show that biasing both sides of the duct is more effective than biasing the outer wall alone.  相似文献   

2.
A magnetic duct is inserted between the cathodic arc plasma source and the chamber to eliminate the macroparticles. In this paper, the plasma output of the magnetic duct is determined as a function of the magnetic field and the bias voltage under the Bilek biasing mode and entire duct biasing mode. The computer simulation and the experimental result indicate that the ${\vec E}\times{\vec B}$ drift results in an extra diffusion flux under the Bilek biasing mode. The test verifying the electron oscillation was conducted in the magnetic duct biased in the Bilek mode. The electron behaviour under Bilek biasing mode is different from that under entire duct biasing mode. The Bilek biasing mode has a lower plasma output than the entire duct biasing mode.  相似文献   

3.
Curved magnetic ducts are frequently used to remove macroscopic-sized droplets from the plasma stream of cathodic vacuum arcs. The plasma of a cathodic vacuum arc in a magnetic filter is characterized by a strongly directional ion velocity (corresponding to 20-100 eV) and magnetized electrons. In the first section of this paper the effects of these features on the I-V characteristic curves of planar probes are identified and explained using a simple model. This is then used to interpret the interaction of the plasma with the walls of a biased quarter torus duct. Two small electrodes placed on the outer and inner sections of the curved duct wall show that the I-V characteristic is determined primarily by the electron-ion current balance at the wall on the outside of the curve. The application of a bias to a planar electrode on the outer wall section was found to give the same increase in throughput as a positive bias applied to the entire duct with the advantage of a much smaller electron current being drawn by the biasing power supply. The improvement in duct throughput achievable with positive-biasing of the duct wall was found to depend on both the configuration and strength of the magnetic field in the quarter torus filter. The plasma density profile and potential were unaffected by the application of the bias  相似文献   

4.
The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode arc investigated. The arc voltage Va is measured with a fixed arc current for an anode diameter of 40 mm. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc when the anode hole diameter is 40 mm. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field  相似文献   

5.
The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode are investigated. The arc voltage Va is measured with a fixed arc current. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field.  相似文献   

6.
When double‐break vacuum circuit breakers (VCBs) interrupt the fault current, the series arc will generate their individual magnetic fields in different breaks. The magnetic field in one break will influence the arc in another break if the magnetic field is strong enough or the two breaks are very close. In this case, an interactive magnetic field effect happens. This field is also called the bias magnetic field (BMF). BMF can cause anode erosion and affect the performance at current zero. The distribution of BMF and the optimal configuration of the double‐break VCBs were obtained by the electromagnetic field simulation using the Ansoft Maxwell software. Based on the simulated magnetic field data, in the experiments, the interaction between the series vacuum arcs in double‐break VCBs was equivalent to the interaction between a single vacuum arc and the magnetic field generated by a Helmholtz coil. A high‐speed CMOS camera was used to record the trajectory of the vacuum arc plasma under different BMFs with different types of contacts. The results show the BMF can increase the arc voltage, and the arc becomes unstable. When the BMF becomes stronger, the arc voltage increases, and the arc becomes more unstable. In addition, for different types of contacts, the development process of the arc and the influence level are different under the same BMF. For a Wan‐type transverse magnetic field (TMF) contact or strong BMF, metal sputtering is evident and anode erosion becomes serious. For a cup‐type axial magnetic field (AMF) contact, the influence of BMF on the series arc plasma in double‐break VCBs is less than that of the Wan‐type TMF contact. The results of this work may be helpful for the design of compact double‐break VCBs.  相似文献   

7.
A model is proposed for the flow of a plasma originating from a cathodic vacuum arc into a curvilinear magnetic field. The model gives good agreement with measurements obtained from a filtered cathodic-arc thin film deposition system. The important parameters involved in the motion of a vacuum arc plasma beam through a magnetic filter are examined. The analysis is based on the use of the guiding center approximation to describe the motion of the charged particles produced in the plasma where the thermal energy is negligible compared to the mass flow energy. Electron-ion collision effects are included within the framework of the drift model. It is shown that under the limiting condition of a collision frequency which is much higher than the cyclotron frequency of the electron, the motion of the plasma ions around the bend becomes independent of the magnetic field, with the number of ions traversing the filter significantly reduced. However, in the collisionless plasma case (cyclotron frequency higher than the collision frequency), the model predicts a square-law relationship between ion-saturation current and magnetic field , Ip B2  相似文献   

8.
S N Sen  M Gantait 《Pramana》1988,30(2):143-151
The variation of voltage, current and output power in a mercury arc plasma has been investigated in an axial magnetic field (0–1350 G) for three values of discharge current namely 3, 4 and 5 A. The voltage increases and current decreases almost linearly and the output power also increases with increase of the magnetic field. The conductivity value in magnetic field has been calculated and an analytical expression presented to represent the variation of conductivity in the magnetic field. Utilizing this expression the variation of output power with magnetic field can be explained.  相似文献   

9.
李刘合  刘红涛  罗辑  许亿 《物理学报》2016,65(6):65202-065202
采用大尺寸矩形石墨靶作为真空阴极电弧源, 研制了带状真空电弧磁过滤器. 使用法拉第杯和朗缪尔探针对90 ℃弯曲磁过滤器中的带状等离子体出口所在平面的15个区域的离子能量和密度进行了测试; 用该带状真空电弧磁过滤器制备了类金刚石膜(diamond-like carbon, DLC); 对相应位置上的类金刚石膜进行了Raman分析和膜厚测量. 结果表明: 磁过滤器出口所在平面的15个划分区域中离子能量分布接近麦克斯韦分布, 离子能量分布与类金刚石膜的结构具有明显的对应特征, 离子密度分布与DLC膜膜厚分布相互之间具有相关性.  相似文献   

10.
The transport of vacuum arc plasmas through a 90° curved magnetic macroparticle filter was investigated using a high-current pulsed arc source with a carbon cathode. The peak arc current was in the kiloampere range, exceeding considerably the level of what has been reported in the literature. The main question investigated was whether magnetic macroparticle filters could be scaled up while maintaining the transport efficiency of small filters. In front of the cathode, we found that arc current dependent total ion saturation currents were in the range from 10% to 23% of the arc current. The best relative transmission was 25% (time integrated output/time integrated input) at a duct wall bias of 12.5 V and at an axial magnetic field of about 100 mT. The measured relative transmission of the used high-current arrangement is comparable to what has been observed with other low-current filters. The absolute measurable ion saturation currents at the filter exit reached 70 A at an arc current of about 1000 A  相似文献   

11.
采用另加偏压的单阴极弧氦放电直线等离子体装置对氦等离子体的基本特性进行了研究.对氦轴向输运规律做了描述并与光谱测量数据做了定性地比较.实验结果表明,氦等离子体的电子温度与电子密度均随放电电流、约束磁场的增加而增加.氦原子与氦离子的辐射光谱随放电电流、偏压、磁场的变化规律进行了测量分析,同时氦离子对钨靶积分辐照效应进行了观察.这些结果不但提供了氦等离子体的基本特性,对于研究氦离子与面向等离子材料相互作用导致产生气泡、肿胀、脆化损伤等的评估,特别是对将来伴有(n,α)反应时具有一定的参考价值.  相似文献   

12.
Measurements of the angular flux distribution of the cathodic arc plasma (I ? 100 A) subjected to a transverse magnetic field (B ? 8.5 × 10-2 T) ae presented. The angular distribution without magnetic field approximately follows the cosine law. Expansion with transverse field is found to deviate strongly from the cosine law, the plasma being confined close to the cathode plane and expanding along the magnetic-field lines. Furthermore, time-resolved photographs of the expansion reveal the predicted pulsating behavior of the expanding plasma.  相似文献   

13.
采用另加偏压的单阴极弧氦放电直线等离子体装置对氦等离子体的基本特性进行了研究。对氦轴向输运规律做了描述并与光谱测量数据做了定性地比较。实验结果表明,氦等离子体的电子温度与电子密度均随放电电流、约束磁场的增加而增加。氦原子与氦离子的辐射光谱随放电电流、偏压、磁场的变化规律进行了测量分析,同时氦离子对钨靶积分辐照效应进行了观察。这些结果不但提供了氦等离子体的基本特性,对于研究氦离子与面向等离子材料相互作用导致产生气泡、肿胀、脆化损伤等的评估,特别是对将来伴有(n, α)反应时具有一定的参考价值。  相似文献   

14.
真空电弧的特性直接受到从阴极斑点喷射出的等离子体射流的影响,对等离子体射流进行数值仿真有助于我们深入了解真空电弧的内部物理机制.然而,磁流体动力学和粒子云网格仿真方法受限于计算精度和计算效率的原因,无法有效地应用于真空电弧等离子体射流仿真模拟.本文开发了一套三维等离子体混合模拟算法,并在此基础上建立了真空电弧单阴极斑点射流仿真模型,模型中将离子作宏粒子考虑,而电子作无质量流体处理,仿真计算了自生电磁场与外施纵向磁场作用下等离子体的分布运动状态.仿真结果表明,单个阴极斑点情况下真空等离子体射流在离开阴极斑点后扩散至极板间,其整体几何形状为圆锥形,离子密度从阴极到阳极快速下降.外施纵向磁场会压缩等离子体,使得等离子体射流径向的扩散减少并且轴线上的离子密度升高.随着外施纵向磁场的增大,其对等离子体射流的压缩效应增强,表现为等离子体射流的扩散角度逐渐减小.此外,外施纵向磁场对等离子体射流的影响也受到电弧电流大小的影响,压缩效应随电弧电流的增加而逐渐减弱.  相似文献   

15.
Direct current (dc) arc plasma with continuous aerosol supply was coupled with an external oscillatingmagnetic field of a few tens of mT and a frequency of up to 1 kHz. Such configuration was used to alter the plasma‐related radiative properties. The magnetic field was oriented perpendicularly to the electric field in the plasma and forced the arc column to oscillate as a whole with respect to the surrounding atmosphere. The magnitude of the appliedmagnetic.eld controls the amplitude of the oscillatory motion. Several parameters that can contribute to the radiative properties of the plasma were investigated (arc current, composition of aerosol introduced into the plasma, amplitude and frequency of the magnetic field applied). Spectral emission from different zones of the plasma column was measured by optical emission spectroscopy (OES). In comparison to steady‐state plasma, the applied magnetic field induces an intensity enhancement of emission of the most analytes considered. The intensity enhancement is strongly affected by the amplitude and frequency of plasma column oscillations, i.e. by plasma column velocity. Also, intensity enhancement depends on the plasma zone observed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Plasma jets from conventional non‐transferred arc plasma devices are usually operated in turbulent flows at atmospheric pressure. In this paper, a novel non‐transferred arc plasma device with multiple cathodes is introduced to produce long, laminar plasma jets at atmospheric pressure. A pure helium atmosphere is used to produce a laminar plasma jet with a maximum length of >60 cm. The influence of gas components, arc currents, anode nozzle diameter, and gas flow rate on the jet characteristics is experimentally studied. The results reveal that the length of the plasma jet increases with increasing helium content and arc current but decreases with increasing nozzle diameter. As the gas flow rate increases, the length of the plasma jet initially increases and then decreases. Accordingly, the plasma jet is transformed from a laminar state to a transitional state and finally to a turbulent state. Furthermore, the anode arc root behaviours corresponding to different plasma jet flows are studied. In conclusion, the multiple stationary arc roots that exist on the anode just inside the nozzle entrance are favourable for the generation of a laminar plasma jet in this device.  相似文献   

17.
The behavior of the electromagnetic and thermal quantities in a plasma arc placed between two conducting rails is analyzed. The plasma hydrogen drives the hydrogen pellets for the refueling of magnetic fusion reactors. Considering the general equations of electromagnetism and of plasma fluid dynamics and assuming steady-state conditions in a frame which is moving at the same rate as the plasma arc armature, a one-dimensional model is deduced. The effects of an applied magnetic field on the behavior of all flow variables are investigated. Results indicate that the adverse effects of plasma arc heating can be reduced by the application of a magnetic-induction field normal to the current path in the armature. At the maximum acceleration pressure (30 bar) applicable to the hydrogen pellet in the proposed one-dimensional model, the arc temperature at the pellet backend falls from 20000 to 14000 K when a magnetic induction of about 5 T is applied  相似文献   

18.
An improved drift approximation model with an added radial electrostatic field has been successfully developed. Our model provides a computationally efficient way of quantitatively describing the plasma motion and predicting the plasma behavior in the toroidal solenoid in a filtered cathodic vacuum arc (FCVA) system. Storer's (1989) experimental results have been successfully simulated by this model. A good quantitative fit is obtained for our simulation results to the measured ion currents versus distance along the torus for various B field strengths, the attenuation length, and the wall current. The model describes the change of plasma density along the torus and provides the value of the electron-ion collision frequency at various conditions. The effect of the magnetic field and radial electric field on the plasma transportation can be assessed by the simulation and various plasma parameters can be determined. It is found that the radial electric field confines the 3-directional drift of the ions and is one of the most important parameters in determining the ion throughput. For any given B field strength and plasma parameters, there is a peak ion output corresponding to an optimal potential difference which can be obtained by the simulation. Over three times more ion output can be achieved when the torus wall is appropriately biased  相似文献   

19.
磁过滤器电流对非晶碳薄膜摩擦学特性影响的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
韩亮  杨立  杨拉毛草  王炎武  赵玉清 《物理学报》2011,60(4):46802-046802
研究了过滤阴极真空电弧技术中,不同的磁过滤器电流下(5—13 A),制备的四面体非晶碳(ta-C)薄膜对摩擦学特性的影响.通过对薄膜厚度,薄膜结构以及薄膜表面粗糙度随磁过滤电流的变化结果进行了测试,结果表明,随着磁过滤器电流的增大,薄膜的sp3键含量逐渐减少,表面粗糙度从0.13增大到0.38.磁过滤器电流在5 A时,薄膜的摩擦系数最小约为0.08,当电流增大到7 A时,摩擦系数显著增大,磁过滤器电流从7 A增大到13 A时,薄膜的摩擦系数再次减小约为0.1. 关键词: 四面体非晶碳 过滤阴极真空电弧 磁过滤器电流 摩擦系数  相似文献   

20.
The total amount of plasma, peak plasma density, and plasma density radial profile are derived from a series of measurements of ion current density (with a Faraday cup) and integrated electron line density (with a microwave interferometer) for a cathodic arc derived plasma. Comparisons are made between cathode material (erbium and titanium), arc current, background gas pressure, and the presence or absence of a series magnetic solenoid around the coaxial anode and cathode  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号