首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. Mohit 《Composite Interfaces》2018,25(5-7):629-667
Abstract

Plant cellulose fiber polymer composites are readily applied in wide range of applications due to ecological and economical alternative to traditional materials. The considerable amount of residues and organic wastes from agricultural process are still employed as lower energy resource. Organic materials are generally disposed in composting, landfilling or anaerobic digestion. The utilization of these wastes in plant fiber composites shows significant alternative and environmental friendly in nature. The production of plant cellulose fiber composite with higher structural properties is optimized by interfacial bonding between polymer and reinforced fiber. The interface plays a vital role in regulating mechanical properties by distributing bonds and stress transferring, which is one of least understood element of composites. This paper presents the comprehensive review of fiber structures, different modification techniques to reduce the incompatibility between matrix and fiber, assessment of structure interface and bonding, clarifies the interfacial adhesion of cellulose fiber composites.  相似文献   

2.
This paper reports on the results of investigations into the general regularities of deformation and fracture of fiber composite materials based on new heat-resistant polymer binders. Fiber composites based on these binders can find wide application in various fields of engineering. It is established that an increase in the loss modulus of the polymer matrix decreases the probability of formation of a brittle crack in the matrix at the fiber break and increases the time interval between breakages of adjacent fibers. This leads to retardation of the correlated breakage of the fibers in fiber composite materials under loading, i.e., to an increase in their strength and fracture toughness. The inference is made that the matrix of high-strength heat-resistant fiber composites with a high fracture toughness should possess not only a high elasticity (this has long been known) but also good dissipative properties over the entire temperature range of operation.  相似文献   

3.
《Composite Interfaces》2013,20(7-9):731-750
Melt flow instabilities during extrusion of wood polymer composites (WPC) containing 30–60 wt% wood flour (WF) have been investigated. The research emphasized elucidation of the extrudate surface tearing mechanism and its relation to wall slip. This interesting phenomenon has been known in the WPC industry for years; however, it has not received much research interest. It was observed that increasing the wood flour loading up to 50 wt% aggravated the surface tearing; however, addition of 60 wt% wood flour completely eliminated the surface defect due to strong wall slip and plug flow. It was also found that addition of lubricants and increasing the shear rate significantly improved the surface appearance of the filled compounds. Molecular weight and molecular weight distribution of the polymer matrix influence the melt flow properties of the composites. The significance of the entrance pressure measurement and its usefulness for quantitative assessment of filler–matrix interactions in composite materials is also demonstrated in this paper.  相似文献   

4.
Dynamic tensile properties of glass-fiber polymer composites embedded with ZnO nanowhiskers are investigated by a split Hopkinson tensile bar. The stress-strain curves, ultimate strength, failure strain and elastic modulus are obtained and the failure mechanism of the composites is investigated by the macroscopic and microscopic observation of fractured specimens. The strain rate effect on the mechanical behavior is discussed and a constitutive model is derived by simulating the experimental data. The experimental results show that the materials have an obvious non-linear constitutive relation and strain rate strengthening effect. The composites with ZnO nanowhiskers under dynamic loading have various failure modes and better mechanical properties.  相似文献   

5.
聚苯胺(PANI)是一种具有优良光、电、磁等性能的导电高分子,而TiO2/聚苯胺复合物是结合了聚苯胺和TiO2无机粒子优点的产品。在表面活性剂十二烷基苯磺酸(DBSA)和水形成的微乳液体系中,利用过硫酸铵(APS)将苯胺直接聚合成具有二维层状结构的聚苯胺,进而通过采用钛酸正丁酯水解与苯胺聚合同时进行的策略合成了层状TiO2/聚苯胺复合物。通过扫描电镜图片(SEM)发现二维层状结构的聚苯胺是由大量聚苯胺薄片堆积而成。X射线衍射(XRD)分析表明聚苯胺及其复合物的层间距均为3.4nm,说明这种层状结构极有可能是由DBSA通过协同排列成较为规整的双层分子支撑而成的。傅里叶变换红外谱图(FTIR)说明聚苯胺分子链主要是由苯环和醌环结构组成,拉曼光谱(Raman)和X射线光电子能谱图(XPS)则证明钛酸正丁酯在微乳液体系中水解形成的TiO2具有金红石型结构。紫外可见吸收光谱图(UV-Vis)说明引入无机物TiO2会直接改变导电聚合物分子链的电子跃迁行为。  相似文献   

6.
The temperature characteristics of the electric current and the photocurrent in films of composites based on electrically neutral poly(vinyl butyral) with additions of Cu(II)/Cr(III) heterometallic cation-anion complexes are investigated. The electrical conductivity and photoconductivity of the polymer composite films in the visible optical range increase with a decrease in the distance between the metal centers in the complexes and upon introduction of acceptor additions of the C60 fullerene into the composition of the polymer binder and increase exponentially with increasing temperature. The activation energy of electrical conduction and photoconduction exceeds 1 eV and depends weakly on the strength of the external electric field. The temperature characteristics of the electrical conductivity and photoconductivity of the materials under investigation are explained by the specific features of trapping of charge carriers at the interface between particles of the heterometallic complex and the polymer binder.  相似文献   

7.
The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer–ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer–ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (εr) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer–ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors.  相似文献   

8.
Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.  相似文献   

9.
《Composite Interfaces》2013,20(2):77-94
This paper presents an interphase engineering technique suitable for grafting silane-modified polymers onto glass fibres to be used in composites with enhanced impact tolerance. The silane-modified polymers include ethylene polymers grafted with γ-methacryloxypropyltrimethoxysilane (MPS) and a copolymer of butyl acrylate (BuA) and MPS. The grafting of functionalized interphase materials onto glass fibres is performed in solution. By changing the concentrations of the solutions, different amounts of polymer can be deposited on the fibres. Water crosslinking of the polymer gives the possibility of producing stabilised interfacial polymer coatings over a range of thicknesses. It is concluded that acidic conditions (1) promote the grafting of silane-modified polymers on glass fibres and (2) for a given reaction time, increase the amount of crosslinked polymer in the interphase, i.e. yield more stable interphases. It is also likely that preserving acidic conditions at the fibre/polymer interface is important for maintaining bonding across the interface. It is shown that polystyrene/glass-fibre composites having SEBS at the interface are promising candidates for high-impact-tolerance composites.  相似文献   

10.
11.
This paper represents the continuation of our research on built-in piezoelectric sensor for structural health monitoring of composite materials. Experimental research is focused on examining the effects of the embedded sensors on the structural integrity of composite laminates subjected to mechanical tests. A series of composite specimens with and without embedded sensor are tested in fatigue loading while constantly monitoring the response by acoustic emission technique. The acoustic signals are analysed using the classification k-means method in order to identify the different damage mechanisms and to follow the evolution of these mechanisms for both types of composite materials (with and without sensor). The mechanical behaviour of composites with and without embedded sensor shows no difference in the form. The incorporation of piezoelectric sensor causes low degradation of mechanical properties of composites. Comparing embedded sensor to sensor mounted on the surface, the embedded sensor showed a much higher sensitivity. It is thus verified that the embedded acoustic emission sensor had great potential for acoustic emission monitoring in fibre reinforced composite structures.  相似文献   

12.
A complex analysis of the dependence of the absorption coefficient of polymer composites with nonmagnetic carbon inclusions on the real and imaginary parts of the complex permittivity, as well as on the material thickness is performed in frequency range 26–37 GHz. The composites containing 0.2 wt % of carbon fibers have been obtained. It has been experimentally found that the corrugation of the composite surface substantially increases the absorbability (from 63 to 92% at a frequency of 30 GHz and a thickness of 4.50 mm) upon a decrease in the sample mass (by 28%). A method has been proposed for calculating the absorptance of corrugated composites in the microwave range.  相似文献   

13.
Shock fracture mechanisms of different scales were investigated on epoxy composite materials reinforced with silicon carbide microparticles of different concentrations. It is shown that the high heterogeneity of the epoxy composites at different structural scales is one of the factors responsible for their physical and mechanical properties. Under dynamic loading, the material reveals a developed structural scale hierarchy which provides self-consistent deformation and fracture of the material bulk with the lead of rotational deformation modes. As a result, microcracks develop due to low shear strain limited in addition by reinforcing particles. At the start of a main crack, microscale mechanisms dominate, whereas the propagation of its front is governed by macroscale fracture mechanisms.  相似文献   

14.
Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.  相似文献   

15.
Hydroxyapatite (HA) and related materials have been frequently studied as ceramic-based bone graft materials due to their outstanding biocompatibility and osteoconduction. Since the bones are the load supporting parts of a vertebrate, they must have good fracture toughness (KIC) to avoid fracture at high loading during limb movements. However, the main shortcomings of HA are the poor fracture toughness and brittleness. The mechanical properties of HA need to be improved for orthopedic applications, therefore it is often fabricated with other materials into a composite. This article focuses on the effect of carbon nanostructures (CNSs) especially graphene nanoplatelets (GNPs) on the mechanical, physicochemical properties and in-vitro bio-functional performances of HA. We provide an overview on the preparation and characterization of the HA–GNPs composites. To conclude, the challenges in the fabrication of multi-substituted HA–GNPs composites and future outlooks in the biomedical domain are discussed.  相似文献   

16.
A fully aromatic poly(benzimidazole-imide) (PBI) containing triazole side units and amine-modified multi-wall carbon nanotube (MWCNT)/PBI composites were fabricated via a polymerization process of monomer reactants and solution mixing with ultrasonication excitation. The polymer and composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. According to the microscopic characterizations, the MWCNTs homogeneously dispersed in the composites. The mechanical properties of the composite films were also measured by tensile test. The test results evidently indicated that the Young’s modulus increased by about 60.0% at 1 wt% CNT loading, and further modulus growth was observed at higher filler loading. The composite films hold preferable thermal stability the same as the pure PBI. The improvement of the mechanical and thermal properties was attributed to the incorporation of the surface modified CNTs. For CNT-reinforced polymer composites, strong interfacial adhesion and uniform dispersion of CNTs are more crucial factors for improving such properties.  相似文献   

17.
Computational studies of damage mechanisms in hierarchical composites, including biocomposites, nanoparticle reinforced polymer composites and other materials are discussed. Different methods of the analysis of hierarchical effects in the multiscale composites are demonstrated, among them, hierarchical fiber bundle model, 3D multiscale finite element models, analytical studies. Considering wood as a gradient, cellular material with layered composite cell walls, one analyzed the effect of wood structure on damage resistance of wood. The influence of nanoparticles distribution in unidirectional polymer matrix composites with secondary nanoreinforcement on the strength and damage resistance of the composites is demonstrated. The concept of nanostructuring of interfaces and grain boundaries as an important reserve of the improvement of the materials properties is formulated.  相似文献   

18.
Boron industrial solid waste is used as reinforcement for preparing composite materials. This waste has boron trioxide which holds unique properties may affect the surface or interface of the composite. The prepared composites are characterized in order to determine the dispersion and the structure by means of inverse gas chromatography (IGC), Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy (SEM) and X-ray diffraction (XRD). There is a strong relation between the dispersion of reinforcement and the properties of newly formed composite. The dispersive component of the surface energies of the composites and components are determined by IGC. This parameter is difficult to measure by other methods and it is related to the wettability and adhesive characters of solid materials. The effect of compounding ratios of reinforcement is also examined. Furthermore, XRD diffractograms and SEM images of composites showed well dispersion. Thermal analysis revealed that the addition of the boron industrial solid waste to the polymer increased the thermal stability of pure polymer. Infrared spectra of the composites indicated that the composites were formed from the waste reinforcement and the polymer matrix.  相似文献   

19.
Q. Yu 《哲学杂志》2013,93(24):3519-3530
Pure rubber-like materials usually have little or no rate-dependency during finite straining. In contrast, polymeric materials can exhibit rate-dependent rubber-like responses in the large-strain range. A thermodynamic analysis points to the existence of rate-effects for an elastic network. The presence of reversible crystallization with a rate-dependent feature changes the conformation mobility of the network structure and, subsequently, contributes to the alterations in its elasticity. The internal energy of an elastic polymer network, however, exhibits a step-wise dependence on the applied strain-rates; it alters only at discrete values of strain-rates, every pair of which differs with a unique value that can be described as a sensitivity parameter. At loading rates lower than this parameter, the rate-effects of the polymeric network are absent.  相似文献   

20.
Composite materials offer a unique advantage over conventional engineering materials in that structural properties can be tailored to suit specific applications. However, the inherent anisotropy and the discrete layer-by-layer fabrication method of composite materials lead to mechanical behavior and failure characteristics that are quite different from those of homogeneous materials. Consequently, failure modes such as delamination in polymer matrix composites and matrix cracking and damage in ceramic matrix materials prohibit these materials from being used in conventional engineering structures, as well as making their characterization in the laboratory difficult. In this paper, an experimental photomechanics technique called phase-shifting moiré interferometry is described. This technique is capable of providing analysts and designers (both material and structural) with detailed displacement and strain fields near discontinuities in these materials. The technique allows high resolution measurements of in-plane surface displacements to be made without introducing global smoothing errors, thus preserving the integrity of data near cracks, discontinuities and material interfaces. In this paper, the advantages of phase-shifting moiré interferometry will be illustrated through several problems involving composite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号