首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study effects of cosmic fluids on finite-time future singularities in modified f (R, G)-gravity, where R and G are the Ricci scalar and the Gauss–Bonnet invariant, respectively. We consider the fluid equation of state in the general form, ω = ω(ρ), and we suppose the existence of a bulk viscosity. We investigate quintessence region (ω > −1) and phantom region (ω < −1) and the possibility to change or avoid the singularities in f (R, G)-gravity. Finally, we study the inclusion of quantum effects in large curvature regime.  相似文献   

3.
We investigate the Gauss–Bonnet black hole in five dimensional anti-de Sitter spacetimes (GBAdS). We analyze all thermodynamic quantities of the GBAdS, which is characterized by the Gauss–Bonnet coupling c and mass M, comparing with those of the Born–Infeld-AdS (BIAdS), Reissner–Norstr?m-AdS black holes (RNAdS), Schwarzschild-AdS (SAdS), and BTZ black holes. For c<0 we cannot obtain the black hole with positively definite thermodynamic quantities of mass, temperature, and entropy, because the entropy does not satisfy the area law. On the other hand, for c>0, we find the BIAdS-like black hole, showing that the coupling c plays the role of a pseudo-charge. Importantly, we could not obtain the SAdS in the limit of c→0, which means that the GBAdS is basically different from the SAdS. In addition, we clarify the connections between thermodynamic and dynamical stability. Finally, we also conjecture that if a black hole is big and thus globally stable, its quasi-normal modes may take on analytic expressions.  相似文献   

4.
李梓维  胡义涵  李瑜  方哲宇 《中国物理 B》2017,26(3):36802-036802
In the last decade, the rise of two-dimensional(2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light–matter interaction in 2D materials challenges the knowledge of materials physics, which drives the rapid development of materials synthesis and device applications. 2D materials coupled with plasmonic effects show impressive optical characteristics, involving efficient charge transfer, plasmonic hot electrons doping, enhanced light-emitting, and ultrasensitive photodetection. Here, we briefly review the recent remarkable progress of 2D materials, mainly on graphene and transition metal dichalcogenides, focusing on their tunable optical properties and improved opto-electronic devices with plasmonic effects. The mechanism of plasmon enhanced light–matter interaction in 2D materials is elaborated in detail, and the state-of-the-art of device applications is comprehensively described. In the future, the field of 2D materials holds great promise as an important platform for materials science and opto-electronic engineering, enabling an emerging interdisciplinary research field spanning from clean energy to information technology.  相似文献   

5.
We consider a tachyonic model of dark energy in which scalar field non-minimally coupled with curvature and kinetic part of its Lagrangian density.Additionally the model contains the Gauss–Bonnet coupling to the scalar field through an arbitrary function.The non-minimal Gauss–Bonnet coupling function and scalar field potential have been obtained for power-law solution and then for a dynamically varying equation of state.We have extracted the required condition for the so-called phantom divide line crossing in the model and represented such a crossing numerically.  相似文献   

6.
We investigate the validity the generalized second law of thermodynamics in a general braneworld model with curvature correction terms on the brane and in the bulk, respectively. Employing the derived entropy expression associated with the apparent horizon, we examine the time evolution of the total entropy, including the derived entropy of the apparent horizon and the entropy of the matter fields inside the apparent horizon. We show that the generalized second law of thermodynamics is fulfilled on the 3-brane embedded in the 5D spacetime with curvature corrections.  相似文献   

7.
8.
A cosmological model has been constructed with Gauss–Bonnet-scalar interaction, where the Universe starts with exponential expansion but encounters infinite deceleration, q→∞q and infinite equation of state parameter, w→∞w. During evolution it subsequently passes through the stiff fluid era, q=2q=2, w=1w=1, the radiation dominated era, q=1q=1, w=1/3w=1/3 and the matter dominated era, q=1/2q=1/2, w=0w=0. Finally, deceleration halts, q=0q=0, w=−1/3w=1/3, and it then encounters a transition to the accelerating phase. Asymptotically the Universe reaches yet another inflationary phase q→−1q1, w→−1w1. Such evolution is independent of the form of the potential and the sign of the kinetic energy term, i.e., even a non-canonical kinetic energy is unable to phantomize (w<−1)(w<1) the model.  相似文献   

9.
We investigate the thermodynamic properties of 5D static and spherically symmetric black holes in (i) Einstein–Maxwell–Gauss–Bonnet theory, (ii) Einstein–Maxwell–Gauss–Bonnet theory with negative cosmological constant, and in (iii) Einstein–Yang–Mills–Gauss–Bonnet theory. To formulate the thermodynamics of these black holes we use the Bekenstein–Hawking entropy relation and, alternatively, a modified entropy formula which follows from the first law of thermodynamics of black holes. The results of both approaches are not equivalent. Using the formalism of geometrothermodynamics, we introduce in the manifold of equilibrium states a Legendre invariant metric for each black hole and for each thermodynamic approach, and show that the thermodynamic curvature diverges at those points where the temperature vanishes and the heat capacity diverges.  相似文献   

10.
The Goldberg–Sachs theorem is generalized for all four-dimensional manifolds endowed with torsion-free connection compatible with the metric, the treatment includes all signatures as well as complex manifolds. It is shown that when the Weyl tensor is algebraically special severe geometric restrictions are imposed. In particular it is demonstrated that the simple self-dual eigenbivectors of the Weyl tensor generate integrable isotropic planes. Another result obtained here is that if the self-dual part of the Weyl tensor vanishes in a Ricci-flat manifold of (2,2) signature the manifold must be Calabi–Yau or symplectic and admits a solution for the source-free Einstein–Maxwell equations.  相似文献   

11.
We investigate the perturbations of charged scalar field in 5-dimensional Gauss–Bonnet AdS black hole backgrounds. From the perturbation behaviors we obtain the objective picture on how the high curvature influences the spacetime perturbation and the condensation of the scalar hair. The high curvature effects can also be read from the linear response function such as the susceptibility and the correlation length, when the system approaches the critical point. We find that the Gauss–Bonnet term does not affect the critical exponents of the system and they still take the mean-field values.  相似文献   

12.
We use analytic continuation to derive the Euler–Lagrange equations associated to the Pfaffian in indefinite signature (p,q) directly from the corresponding result in the Riemannian setting. We also use analytic continuation to derive the Chern–Gauss–Bonnet theorem for pseudo-Riemannian manifolds with boundary directly from the corresponding result in the Riemannian setting. Complex metrics on the tangent bundle play a crucial role in our analysis and we obtain a version of the Chern–Gauss–Bonnet theorem in this setting for certain complex metrics.  相似文献   

13.
14.
15.
The study of Brans–Dicke cosmology has attracted considerable attention in the recent years since it explains most of the important features of the progress of the universe. We discuss in this letter a homogeneous and anisotropic cosmological model in the framework of Brans–Dicke theory including together a non-linear derivative interaction which appears in theory with the Galilean shift symmetry, a Gauss–Bonnet invariant motivated from heterotic string theory which plays an important role in numerous alternatives cosmological frameworks, two scalar fields and their interactions to fit easier with universe history expansion. Several particular cases are studied and the properties related to scaling solutions and asymptotic behaviour are discussed in some details.  相似文献   

16.
We propose to compute the action and global charges of the asymptotically de Sitter solutions in Einstein–Gauss–Bonnet theory by using the counterterm method in conjunction with the quasilocal formalism. The general expression of the counterterms and the boundary stress tensor is presented for spacetimes of dimension d?7d?7. We apply this technique for several different solutions in Einstein–Gauss–Bonnet theory with a positive cosmological constant. Apart from known solutions, we consider also d=5d=5 vacuum rotating black holes with equal magnitude angular momenta. These solutions are constructed numerically within a nonperturbative approach, by directly solving the Einstein–Gauss–Bonnet equations with suitable boundary conditions.  相似文献   

17.
The fundamental equation of the thermodynamic system gives the relation between the internal energy, entropy and volume of two adjacent equilibrium states. Taking a higher-dimensional charged Gauss–Bonnet black hole in de Sitter space as a thermodynamic system, the state parameters have to meet the fundamental equation of thermodynamics. We introduce the effective thermodynamic quantities to describe the black hole in de Sitter space. Considering that in the lukewarm case the temperature of the black hole horizon is equal to that of the cosmological horizon, we conjecture that the effective temperature has the same value. In this way, we can obtain the entropy formula of spacetime by solving the differential equation. We find that the total entropy contains an extra term besides the sum of the entropies of the two horizons. The corrected term of the entropy is a function of the ratio of the black hole horizon radius to the cosmological horizon radius, and is independent of the charge of the spacetime.  相似文献   

18.
In this work, we have investigated the dynamical instability of spherically symmetric gravitating object under expansion-free condition in Einstein Gauss–Bonnet gravity. In this context, the field equations and dynamical equations have been established in the Gauss–Bonnet gravity. The linear perturbation scheme has been used on the dynamical equations to construct the collapse equation. The Newtonian, post Newtonian and post Newtonian approximations have been applied to investigate the general dynamical (in)stability equations. It has been observed that the instability range of the collapsing source is independent of adiabatic index Γ (stiffness of the fluid does not play any role). The instability range can be determined by the pressure anisotropy, energy density profile, Gauss–Bonnet parameter α and some constraints at Newtonian, post Newtonian and post Newtonian order.  相似文献   

19.
We study Hawking radiation in a new class of black hole solutions in Einstein–Gauss–Bonnet theory. The black hole has been argued to have vanishing mass and entropy, but finite Hawking temperature. To check if it really emits radiation, we analyze Hawking radiation using the original method of quantization of a scalar field in the black hole background and with the quantum tunneling method, and confirm that it emits radiation at the Hawking temperature. A general formula is derived for the Hawking temperature and backreaction in the tunneling approach. Physical implications of these results are discussed.  相似文献   

20.
李应乐  黄际英 《中国物理》2005,14(4):646-655
The scale-transformation of electromagnetic theory is investigated in detail based on the form of Maxwell equations in scale-transformation being unchanged in different coordinate systems. The relations of electromagnetic parameters in a rectangular coordinate system and in a spherical coordinate system are presented respectively. The scale-transformation invariants for electromagnetic field are derived and their physical meaning is also presented. It is indicated by simulation that the electromagnetic waves located in medium can be considered to be isotropic due to the fact that the size of propagating vector affected by the scale factors and observing azimuth is on a size of 10^-9, which provides a new approach for investigating the electromagnetic characteristics of ellipsoidal targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号