首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have realized a tunable coupling over a large frequency range between an asymmetric Cooper pair transistor (charge qubit) and a dc SQUID (phase qubit). Our circuit enables the independent manipulation of the quantum states of each qubit as well as their entanglement. The measurement of the charge qubit's quantum states is performed by an adiabatic quantum transfer from the charge to the phase qubit. The measured coupling strength is in agreement with an analytic theory including a capacitive and a tunable Josephson coupling between the two qubits.  相似文献   

2.
We have measured the current-voltage characteristics of small-capacitance single Josephson junctions at low temperatures ( T< or =0.04 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. We have clearly observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance of the SQUID arrays is much higher than the quantum resistance h/e(2) approximately 26 kOmega. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling in the single Josephson junction.  相似文献   

3.
A scheme of magnetic calorimeter for registration of rare events characterized by small energy release (cosmic rays, WIMPs, solitary X-ray quanta) is proposed. The calorimeter is brought to operation by adiabatic demagnetization, and its magnetic response is measured by a quantum interferometer (SQUID, A. Barone and G. Paterno, Physics and applications of Josephson Effect). Special consideration is given to the specific features of calorimeter operation in the ferromagnetic transition region. The trigger registration of ultrasmall energy release by a ferromagnetic system in the metastable state is described.  相似文献   

4.
We review the macroscopic quantum phenomena in superconducting microstructures based on multiterminal junctions. The multiterminal Josephson junction presents a system in which the weak coupling takes place between several massive superconducting banks (terminals). Compared with the conventional (two-terminal) junctions such systems have additional degrees of freedom and a corresponding set of control parameters, preset transport currents and (or) applied magnetic fluxes. The general phenomenological theory of multiterminal Josephson junctions is presented. The specific multichannel interference effects (studied theoretically and experimentally) are described for two microstructures: the four-terminal SQUID and a system consisting of two weakly coupled superconducting rings.  相似文献   

5.
We suggest a system in which the amplitude of macroscopic flux tunneling can be modulated via the Aharonov-Casher effect. The system is an rf SQUID with the Josephson junction replaced by a Bloch transistor--two junctions separated by a small superconducting island on which the charge can be induced by an external gate voltage. When the Josephson coupling energies of the junctions are equal and the induced charge is q = e, destructive interference between tunneling paths brings the flux tunneling rate to zero. The device may also be useful as a qubit for quantum computation.  相似文献   

6.
We propose a technique to couple the position operator of a nanomechanical resonator to a SQUID device by modulating its magnetic flux bias. By tuning the magnetic field properly, either linear or quadratic couplings can be realized, with a discretely adjustable coupling strength. This provides a way to realize coherent nonlinear effects in a nanomechanical resonator by coupling it to a Josephson quantum circuit. As an example, we show how squeezing of the nanomechanical resonator state can be realized with this technique. We also propose a simple method to measure the uncertainty in the position of the nanomechanical resonator without quantum state tomography.  相似文献   

7.
We show that the quantum properties of some Josephson SQUID devices are described by a boundary sine-Gordon model. Our approach naturally describes multi-junction SQUID devices and, when applied to a single junction SQUID (the rf-SQUID), it reproduces the known results of Glazman and Hekking. We provide a detailed analysis of the regimes accessible to an rf-SQUID and to a two-Josephson junction SQUID device (the dc-SQUID). We then compute the normal component of the current-response of a SQUID device to an externally applied voltage and show that the equation describing the current-voltage characteristic function reduces to well-known results when the infrared cutoff is suitably chosen. Our approach helps in establishing new and interesting connections between superconducting devices, quantum Brownian motion, fermionic quantum wires and, more generally, quantum impurity problems.  相似文献   

8.
Superconducting quantum interference devices (SQUIDs) are very well suited for experimental investigations of ratchet effects. This is due to the periodicity of the Josephson coupling energy with respect to the phase difference δ of the superconducting macroscopic wave function across a Josephson junction. We show first that, within the resistively and capacitively shunted junction model, the equation of motion for δ is equivalent to the motion of a particle in the so-called tilted washboard potential, and we derive the conditions which have to be satisfied to build a ratchet potential based on asymmetric dc SQUIDs. We then present results from numerical simulations and experimental investigations of dc SQUID ratchets with critical-current asymmetry under harmonic excitation (periodically rocking ratchets). We discuss the impact of important properties like damping or thermal noise on the operation of SQUID ratchets in various regimes, such as adiabatically slow or fast nonadiabatic excitation. Received: 22 November 2001 / Accepted: 14 January 2002 / Published online: 22 April 2002  相似文献   

9.
郑东宁 《物理学报》2021,(1):164-177
超导现象是一种宏观量子现象.磁通量子化和约瑟夫森效应是两个最能体现这种宏观量子特性的物理现象.超导量子干涉器件(superconducting quantum interference device,SQUID)是利用这两个特性而形成的超导器件.SQUID器件在磁信号灵敏探测方面具有广泛的应用.本文简要介绍低温超导和高温超导SQUID器件的相关背景和发展现状以及应用领域.  相似文献   

10.
We have studied the basic characteristics of a radio frequency superconducting quantum interference device (rf SQUID) involving two Josephson junctions connected in series, the case for the widely used grain boundary junction (GBJ) rf SQUID. It is found that the SQUID properties are determined mainly by the weaker junction when the critical current of the weaker junction is much lower than that of the other junction. Otherwise, the effect of the other junction is not negligible. We also find that only when the hysteresis parameter β is less than 1-α, where α is the critical current ratio of the two junctions, will the SQUID operate in the nonhysteretic mode.  相似文献   

11.
陈钊  何根芳  张青雅  刘建设  李铁夫  陈炜 《物理学报》2015,64(12):128501-128501
超导量子干涉仪(SQUID)放大器具有低输入阻抗、低噪声、低功耗等优点, 目前被广泛用于微弱信号的检测领域. 与其他工艺相比, Nb/Al-AlOx/Nb结构的约瑟夫森结具有相对较高的转变温度(Tc)、高的磁通电压调制系数以及良好的热循环能力、较宽的临界电流范围, 因此是制备SQUID放大器的很好选择. 设计并制作了欠阻尼、过阻尼约瑟夫森结以及具有Washer型输入线圈的单SQUID放大器, 通过在He3制冷机3 K温区下对器件电流-电压特性进行测量, 得到良好的结I-V特性曲线、SQUID调制特性, 初步实现利用SQUID进行放大作用, 并计算了SQUID的电流分辨率. 此项工作对于超导转变边沿传感器读出电路的实现具有重要的意义.  相似文献   

12.
A new type of a superconducting quantum interference device (SQUID) based on a single superconducting loop without Josephson junctions and with asymmetric contacts has been proposed. This SQUID offers advantages in simplicity of fabrication and a steeper dependence of measured quantities on the magnetic flux. To confirm the possibility of making this type of SQUID, the magnetic field dependence of the critical current in an aluminum ring with asymmetric contacts has been experimentally investigated.  相似文献   

13.
We propose a single shot quantum measurement to determine the state of a Josephson charge quantum bit (qubit). The qubit is a Cooper pair box and the measuring device is a two junction superconducting quantum interference device (dc SQUID). This coupled system exhibits a close analogy with a Rydberg atom in a high Q cavity, except that in the present device we benefit from the additional feature of escape from the supercurrent state by macroscopic quantum tunneling, which provides the final readout. We test the feasibility of our idea against realistic experimental circuit parameters and by analyzing the phase fluctuations of the qubit.  相似文献   

14.
We show that the three-junction SQUID device designed for the Josephson flux qubit can be used to study the dynamics of quantum chaos when operated at high energies. We determine the parameter region where the system is classically chaotic. We calculate numerically the fidelity or Loschmidt echo (LE) in the quantum dynamics under perturbations in the magnetic field and in the critical currents, and study different regimes of the LE. We discuss how the LE could be observed experimentally considering both the preparation of the initial state and the measurement procedure.  相似文献   

15.
MgO衬底上的YBa2Cu3O7-δ(YBCO)台阶边沿型约瑟夫森结(台阶结)在高灵敏度高温超导量子干涉器(superconducting quantum interference device,SQUID)等超导器件研制方面具有重要的应用价值和前景.本文对此类YBCO台阶结的制备和特性进行了研究.首先利用离子束刻蚀技术和两步刻蚀法在MgO(100)衬底上制备陡度合适、边沿整齐的台阶,然后利用脉冲激光沉积法在衬底上生长YBCO超导薄膜,进而利用紫外光刻制备出YBCO台阶结.在结样品的电阻-温度转变曲线中,观测到低于超导转变温度时的电阻拖尾现象,与约瑟夫森结的热激活相位滑移理论一致.伏安特性曲线测量表明结的行为符合电阻分路结模型,在超导转变温度TC附近结的约瑟夫森临界电流密度TC随温度T呈现出(TC-T)^2的变化规律,77 K时JC值为1.4×10^5 A/cm^2.利用制备的台阶结,初步制备了YBCO射频高温超导SQUID,器件测试观察到良好的三角波电压调制曲线,温度77 K、频率1 kHz时的磁通噪声为250μΦ0/Hz^1/2.本文结果为进一步利用MgO衬底YBCO台阶结研制高性能的高温超导SQUID等超导器件奠定了基础.  相似文献   

16.
如果将由两个相同的Josephson结组成的双结SQUID放置于Q值足够高的谐振腔内,当其Josephson频率ω=2eV0/h与谐振腔的本征频率ωr发生谐振时,腔内就被激起一个驻波电磁场,这个场对两个结的反馈作用,将导致双结SQUID的dc Josephson电流在一个磁通量子内随磁场产生多次阶梯效应。理论给出两个结的Josephson电流产生一系列新的干涉作用:如果两个结分别位于反馈场的波峰,则阶跃电流加强;如果其中一个位于波谷,则使SQUID的干涉图形改变π/2位相,且两个结电流产生相干性减小;如果一个在波峰一个在波节,则SQUID退化到单结;如果两个结都在波节,则不出现n≠0的阶梯。 关键词:  相似文献   

17.
M. Basler  W. Krech  K. Yu. Platov   《Physics letters. A》1994,190(5-6):489-494
Within the RSJ model we performed an analytical and numerical investigation of SQUID cells consisting of two Josephson junctions shunted by an extremely small inductance leading to strong coupling of the elements. Contrary to the well-known behavior of cells shunted by a high inductance voltage phases of the junctions are locked with very small phase difference for almost all values of external flux. Only for external flux in the vicinity of half a flux does the quantum phase difference rise rapidly to π.  相似文献   

18.
We have probed the current-phase relation of an atomic contact placed with a tunnel junction in a small superconducting loop. The measurements are in quantitative agreement with the predictions of a resistively shunted SQUID model in which the Josephson coupling of the contact is calculated using the independently determined transmissions of its conduction channels.  相似文献   

19.
We use boundary field theory to describe the phases accessible to a tetrahedral qubit coupled to Josephson junction chains acting as Tomonaga-Luttinger liquid leads. We prove that, in a pertinent range of the fabrication and control parameters, an attractive finite coupling fixed point emerges due to the geometry of the composite Josephson junction network. We show that this new stable phase is characterized by the emergence of a quantum doublet which is robust not only against the noise in the external control parameters (magnetic flux, gate voltage) but also against the decoherence induced by the coupling of the tetrahedral qubit with the superconducting leads. We provide protocols allowing to read and to manipulate the state of the emerging quantum doublet and argue that a tetrahedral Josephson junction network operating near the new finite coupling fixed point may be fabricated with today?s technologies.  相似文献   

20.
毛博  戴远东  王福仁 《中国物理》2005,14(2):301-305
我们研究了双结射频超导量子干涉器件(rf SQUID)的含时特性,给出了总磁通的动力学方程,并分析了在回滞模式和非回滞模式下的本征磁通噪声。结果显示:两个结的临界电流差别越大则越有助于获得小的本征噪声,在这种情况下,双结rf SQUID的本征磁通噪声会比单结rf SQUID的噪声稍大,但不超过一个数量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号