首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
    
Kinetics and mechanism of oxidation of L-methionine by iron(III)-1,10-phenanthroline complex have been studied in perchloric acid medium. The reaction is first order each in iron(III) and methionine. Increase in [phenanthroline] increases the rate while increase in [HClO4] decreases it. While the reactive species of the substrate is the zwitterionic form, that of the oxidant is [Fe(phen)2(H2O)2]3+. The proposed mechanism leads to the rate law   相似文献   

2.
The oxidation of a ternary complex of chromium(III), [CrIII(DPA)(Mal)(H2O)2]?, involving dipicolinic acid (DPA) as primary ligand and malonic acid (Mal) as co-ligand, was investigated in aqueous acidic medium. The periodate oxidation kinetics of [CrIII(DPA)(Mal)(H2O)2]? to give Cr(VI) under pseudo-first-order conditions were studied at various pH, ionic strength and temperature values. The kinetic equation was found to be as follows: \( {\text{Rate}} = {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} \mathord{\left/ {\vphantom {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}} \) where k 6 (3.65 × 10?3 s?1) represents the electron transfer reaction rate constant and K 4 (4.60 × 10?4 mol dm?3) represents the dissociation constant for the reaction \( \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } \rightleftharpoons \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)\left( {\text{OH}} \right)} \right]^{2 - } + {\text{H}}^{ + } \) and K 5 (1.87 mol?1 dm3) and K 6 (22.83 mol?1 dm3) represent the pre-equilibrium formation constants at 30 °C and I = 0.2 mol dm?3. Hexadecyltrimethylammonium bromide (CTAB) was found to enhance the reaction rate, whereas sodium dodecyl sulfate (SDS) had no effect. The thermodynamic activation parameters were estimated, and the oxidation is proposed to proceed via an inner-sphere mechanism involving the coordination of IO4 ? to Cr(III).  相似文献   

3.
The kinetics of oxidation of cis-[CrIII(gly)2(H2O)2]+ (gly = glycinate) by $ {\text{IO}}_{ 4}^{ - } $ has been studied in aqueous solutions. The reaction is first order in the chromium(III) complex concentration. The pseudo-first-order rate constant, k obs, showed a small change with increasing $ \left[ {{\text{IO}}_{ 4}^{ - } } \right] $ . The pseudo-first-order rate constant, k obs, increased with increasing pH, indicating that the hydroxo form of the chromium(III) complex is the reactive species. The reaction has been found to obey the following rate law: $ {\text{Rate}} = 2k^{\text{et}} K_{ 3} K_{ 4} \left[ {{\text{Cr}}\left( {\text{III}} \right)} \right]_{t} \left[ {{\text{IO}}_{ 4}^{ - } } \right]/\left\{ {\left[ {{\text{H}}^{ + } } \right] + K_{ 3} + K_{ 3} K_{ 4} \left[ {{\text{IO}}_{ 4}^{ - } } \right]} \right\} $ . Values of the intramolecular electron transfer constant, k et, the first deprotonation constant of cis-[CrIII(gly)2(H2O)2]+, K 3 and the equilibrium formation constant between cis-[CrIII(gly)2(H2O)(OH)] and $ {\text{IO}}_{ 4}^{ - } $ , K 4, have been determined. An inner-sphere mechanism has been proposed for the oxidation process. The thermodynamic activation parameters of the processes involved are reported.  相似文献   

4.
The kinetics of oxidation of [FeII(phen)2(H2O)2]2+ (phen = 1,10-phenanthroline) by periodate were investigated in aqueous acidic medium at different [H+] over a temperature range of 20–40 °C. The reaction was studied under pseudo-first-order conditions by taking [IO 4 ? ] > tenfold over [FeII(phen)2(H2O) 2 2+ ]. The reaction rate increases with increasing [H+], and the kinetics of oxidation obeyed the following rate law:
$$ {\text{Rate}} = \left[ {{\text{Fe}}^{\text{II}} ({\text{phen}})_2({\text{H}}_{2} {\text{O}})_{2}^{2 + } } \right]\left[ {{\text{IO}}_{4}^{ - } } \right]\left\{ {k_{4} K_{2} + k_{5} K_{1} K_{3} [{\text{H}}^{ + } ]} \right\} $$
The surfactant sodium dodecyl sulfate was found to enhance the rate, whereas cetyltrimethylammonium bromide had little effect. Activation parameters associated with k 2 and k 3 were calculated. An electron transfer from Fe(II) to I(VII) is identified as the rate-determining step. The I(VI) species thus generated reacts in a fast step with another Fe(II) complex.
  相似文献   

5.
The substitution of bis(2,4,6-tripyridyl 1,3,5-triazine)iron(II), \textFe(TPTZ) 2 2 + {\text{Fe(TPTZ)}}_{ 2}^{{ 2 { + }}} by 2,2′,6,2″-terpyridine (terpy) occurs on a time scale of about 6 m. The kinetics of this reaction was followed by stopped-flow spectrophotometry in the pH range of 3.6–5.6 in acetate buffer. The data indicate that the reaction occurs in two consecutive steps: kinetic data for both steps were acquired simultaneously and analyzed independently. The first step is assigned to the reaction between \textFe(TPTZ) 2 2 + {\text{Fe(TPTZ)}}_{ 2}^{{ 2 { + }}} and terpy to give Fe(TPTZ)(terpy)2+, followed by its reaction with another terpy molecule to give the final product, \textFe(terpy) 2 2 + {\text{Fe(terpy)}}_{ 2}^{{ 2 { + }}} . The rate of the reaction increases with increases in [terpy] and pH. The kinetic and activation parameters determined for both steps suggest that they involve both associative and dissociative paths. The ternary complex Fe(TPTZ)(terpy)2+ has been prepared, and the kinetics of its reaction with terpy suggest that this reaction is identical with the second step of the \textFe(TPTZ) 2 2 + {\text{Fe(TPTZ)}}_{ 2}^{{ 2 { + }}} -terpy system, supporting the proposed mechanism.  相似文献   

6.
The kinetics of electron transfer from mannitol to hexacyanoferrate(III), catalyzed by osmium(VIII), has been studied in alkaline medium. The substrate order is complex, whereas it is one with respect to the catalyst. The rate is independent of the concentration of oxidant. Also, the rate increases with increasing concentration of hydroxide ion in a complex manner. A kinetic rate law corresponding to the proposed mechanism has been suggested as follows:
where [Mtol] is for mannitol. The kinetic parameters have been evaluated and the value of K1 is in agreement with the value determined spectrophotometrically.  相似文献   

7.
A novel chromium(III) complex of tetraoxalylurea was prepared. In aqueous solutions, [CrIII(H2L)(H2O)]+ (H2L = diprotonated tetraoxalylurea) is oxidized by IO 4 according to the rate law
  相似文献   

8.
The kinetics of anation of chromium(III) species, [Cr(H2O)6]3+ and [Cr(H2O)5OH]2+, by DL-methionine have been studied spectrophotometrically. Effects of varying [methionine]T, [H+], and temperature were investigated. The results are in accord with a mechanism involving a fast 11 outer-sphere association between chromium(III) species and amino acid zwitterion, followed by transformation of the outer-into inner-sphere complex by slow interchange. The rate law consistent with the mechanism is as follows:
  相似文献   

9.
Oxidation of 3-(4-methoxyphenoxy)-1,2-propanediol (MPPD) by bis(hydrogenperiodato) argentate(III) complex anion, [Ag(HIO6)2]5− has been studied in aqueous alkaline medium by use of conventional spectrophotometry. The major oxidation product of MPPD has been identified as 3-(4-methoxyphenoxy)-2-ketone-1-propanol by mass spectrometry. The reaction shows overall second-order kinetics, being first-order in both [Ag(III)] and [MPPD]. The effects of [OH] and periodate concentration on the observed second-order rate constants k′ have been analyzed, and accordingly an empirical expression has been deduced:
where [IO4 ]tot denotes the total concentration of periodate and k a = (0.19 ± 0.04) M−1 s−1, k b = (10.5 ± 0.3) M−2 s−1, and K 1 = (5.0 ± 0.8) × 10−4 M at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k a and k b have been calculated. A mechanism is proposed, involving two pre-equilibria, leading to formation of a periodato–Ag(III)–MPPD complex. In the subsequent rate-determining steps, this complex undergoes inner-sphere electron-transfer from the coordinated MPPD molecule to the metal center by two paths: one path is independent of OH, while the other is facilitated by a hydroxide ion.  相似文献   

10.
Alkaline hexacyanoferrate(III) oxidation of freshly prepared solutions of CrIII (pH>12) at 27°C follows the rate law, Equation 1:
  相似文献   

11.
The solubility of siderite (FeCO3) at 25°C under constant CO2 partial pressure [p(CO2)] was determined in NaCl solutions as a function of ionic strength. The dissolution of FeCO3(s) for the reaction
has been determined as a function of pH = – log[H+]. From these values we have determined the equilibrium constant for the stoichiometric solubility to FeCO3(s) in NaCl
These values have been fitted to the equation
with a standard error of s = 0.15. The extrapolated value of log(K o sp) – 10.9 in water is in good agreement with data in the literature (– 10.8 to – 11.2) determined in solutions of different composition and ionic strength.The measured values of the activity coefficient, T(Fe2+) T(CO3 2–), have been used to estimate the stability constant for the formation of the FeCO3 ion pair, K*(FeCO3). The values of K*(FeCO3) have been fitted to the equation (s = 0.09)
The value of log[K o(FeCO3)] in water found in this study (6.3 ± 0.2) is slightly higher than the value found from extrapolations in 1.0 m NaClO4 solutions (5.9 ± 0.2). These differences are related to the model used to determine the activity coefficients of the Fe(II) and carbonate species in the two solutions.  相似文献   

12.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

13.
Bis(2,4,6-tripyridyl 1,3,5-triazine)iron(II), \textFe(\textTPTZ) 2 2 + {\text{Fe(\text{TPTZ})}}_{ 2}^{{ 2 { + }}} reacts with 3-(2-pyridyl)-5,6-bis(4-phenyl-sulfonicacid)-1,2,4-triazine (PDTS) and 3-(4-(4-phenylsulfonicacid)-2-pyridyl)-5,6-bis(4-phenylsulfonic-acid)-1,2,4-triazine (PPDTS) to give \textFe(PDTS) 3 4- {\text{Fe(PDTS)}}_{ 3}^{ 4- } and \textFe(PPDTS) 3 7- {\text{Fe(PPDTS)}}_{ 3}^{ 7- } respectively. Both of these substitution reactions are fast and their kinetics were monitored by stopped-flow spectrophotometry in acetate buffers in the pH range of 3.6–5.6 at 25–45 °C. Both reactions are first order in \textFe(TPTZ) 2 2 + {\text{Fe(TPTZ)}}_{ 2}^{{ 2 { + }}} and triazine, and pH has negligible effect on the rate. The kinetic data suggest that these reactions occur in an associative path and a mechanism is proposed considering both protonated and unprotonated forms of PDTS and PPDTS are very similar in reactivity. The kinetic and activation parameters have been evaluated.  相似文献   

14.
Prior to this study there were no thermodynamic data for isosaccharinate (ISA) complexes of Fe(III) in the environmental range of pH (>~4.5). This study was undertaken to obtain such data in order to predict Fe(III) behavior in the presence of ISA. The solubility of Fe(OH)3(2-line ferrihydrite), referred to as Fe(OH)3(s), was studied at 22?±?2?°C in: (1) very acidic (0.01?mol·dm?3 H+) to highly alkaline conditions (3?mol·dm?3 NaOH) as a function of time (11?C421?days), and fixed concentrations of 0.01 or 0.001?mol·dm?3 NaISA; and (2) as a function of NaISA concentrations ranging from approximately 0.0001 to 0.256?mol·dm?3 and at fixed pH values of approximately 4.5 and 11.6 to determine the ISA complexes of Fe(III). The data were interpreted using the SIT model that included previously reported stability constants for $ {{\text{Fe(ISA}})_{n}}^{3 - n} $ (with n varying from 1 to 4) and Fe(III)?COH complexes, and the solubility product for Fe(OH)3(s) along with the values for two additional complexes (Fe(OH)2(ISA)(aq) and $ {\text{Fe(OH)}}_{ 3} ( {{\text{ISA}})_{2}}^{2 - } $ ) determined in this study. These extensive data provided a log10 K 0 value of 1.55?±?0.38 for the reaction $ ({\text{Fe}}^{ 3+ } + {\text{ISA}}^{-} + 2 {\text{H}}_{ 2} {\text{O}} \rightleftarrows {\text{Fe(OH}})_{ 2} {\text{ISA(aq}}) + 2 {\text{H}}^{ + } ) $ and a value of ?3.27?±?0.32 for the reaction $ ({\text{Fe}}^{ 3+ } + 2 {\text{ISA}}^{-} + 3 {\text{H}}_{ 2} {\text{O}} \rightleftarrows {\text{Fe(OH)}}_{ 3} ( {\text{ISA}})_{2}^{2 - } + 3 {\text{H}}^{ + } ) $ and show that ISA forms strong complexes with Fe(III) which significantly increase the Fe(OH)3(s) solubility at pH?<~12. Thermodynamic calculations show that competition of Fe(III) with tetravalent ions for ISA does not significantly affect the solubilities of tetravalent hydrous oxides (e.g., Th and Np(IV)) in ISA solutions.  相似文献   

15.
The oxidation of aquaethylenediaminetetraacetatocobaltate(II) [Co(EDTA)(H2O)]−2 by N-bromosuccinimide (NBS) in aqueous solution has been studied spectrophotometrically over the pH 6.10–7.02 range at 25 °C. The reaction is first-order with respect to complex and the oxidant, and it obeys the following rate law:
\textRate = k\textet K 2 K 3 [ \textCo\textII ( \textEDTA )( \textH 2 \textO ) - 2 ]\textT [\textNBS] \mathord/ \vphantom [\textNBS] ( [ \textH + ] + K 2 ) ( [ \textH + ] + K 2 ) {\text{Rate}} = k^{\text{et} } K_{ 2} K_{ 3} \left[ {{\text{Co}}^{\text{II}} \left( {\text{EDTA}} \right)\left( {{\text{H}}_{ 2} {\text{O}}} \right)^{ - 2} } \right]_{\text{T}} {{[{\text{NBS}}]} \mathord{\left/ {\vphantom {{[{\text{NBS}}]} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}  相似文献   

16.
The oxidation of l-valine (l-val) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 3.0 × 10−3 mol dm−3 was studied spectrophotometrically at 298 K and follows the rate law;
where K 4, K 5 and K 6 are the equilibrium constants for the different steps involved in the mechanism, k is the rate constant for the slow step of the reaction. The appearance of [l-val] term in both numerator and denominator explains the observed less than unit order in [l-val]. Similarly the appearances of [H3IO6 2−] and [OH] in the denominator obey the experimental negative less than unit order in [H3IO6 2−] and [OH], respectively. The oxidation reaction in alkaline medium proceeds via a DPC-l-valine complex, which decomposes slowly in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectroscopic studies.  相似文献   

17.
The kinetics and mechanism of the oxidation of [CrIII(DPA)(IDA)(H2O)]? (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × 10?6 mol dm?3 enhanced the reaction rate; the reaction is first order with respect to both [IO4 ?] and the Cr complex, and obeys the following rate law: \( {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . \) Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO4 ? to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation.  相似文献   

18.
The kinetics of oxidation of L-valine by a copper(III) periodate complex was studied spectrophotometrically. The inverse second-order dependency on [OH] was due to the formation of the protonated diperiodatocuprate(III) complex ([Cu(H3IO6)2]) from [Cu(H2IO6)2]3−. The retarding effect of initially added periodate suggests that the dissociation of copper(III) periodate complex occurs in a pre-equilibrium step in which it loses one periodate ligand. Among the various forms of copper(III) periodate complex occurring in alkaline solutions, the monoperiodatocuprate(III) appears to be the active form of copper(III) periodate complex. The observed second-order dependency of [L-valine] on the rate of reaction appears to result from formation of a complex with monoperiodatocuprate(III) followed by oxidation in a slow step. A suitable mechanism consistent with experimental results was proposed. The rate law was derived as:
- \fracd[DPC]dt = \frackK1K2K3[Cu(H2IO6)2]f3- [L -Val]f2[H3IO62 -]f[OH - ]f2.- \frac{\mathrm{d}[\mathrm{DPC}]}{\mathrm{d}t} =\frac{kK_{1}K_{2}K_{3}[\mathrm{Cu}(\mathrm{H}_{2}\mathrm{IO}_{6})_{2}]_{\mathrm{f}}^{3-} [\mathrm{L} -\mathrm{Val}]_{\mathrm{f}}^{2}}{[\mathrm{H}_{3}\mathrm{IO}_{6}^{2 -}]_{\mathrm{f}}[\mathrm{OH}^{ -} ]_{\mathrm{f}}^{2}}.  相似文献   

19.
Summary The oxidation of H2O2 by [W(CN)8]3– has been studied in aqueous media between pH 7.87 and 12.10 using both conventional and stopped-flow spectrophotometry. The reaction proceeds without generation of free radicals. The experimental overall rate law, , strongly suggests two types of mechanisms. The first pathway, characterized by the pH-dependent rate constant k s, given by , involves the formation of [W(CN)8· H2O2]3–, [W(CN)8· H2O2·W(CN)8]6– and [W(CN)8· HO]3– intermediates in rapid pre-equilibria steps, and is followed by a one-electron transfer step involving [W(CN)8·HO]3– (k a) and its conjugate base [W(CN)8·O]4– (k b). At 25 °C, I = 0.20 m (NaCl), the rate constant with H a =40±6kJmol–1 and S a =–151±22JK–1mol–1; the rate constant with H b =36±1kJmol–1 and S b =–136±2JK–1mol–1 at 25 °C, I = 0.20 m (NaCl); the acid dissociation constant of [W(CN)8·HO]3–, K 5 =(5.9±1.7)×10–10 m, with and is the first acid dissociation constant of H2O2. The second pathway, with rate constant, k f, involves the formation of [W(CN)8· HO2]4– and is followed by a formal two-electron redox process with [W(CN)8]3–. The pH-dependent rate constant, k f, is given by . The rate constant k 7 =23±6m –1 s –1 with and at 25°C, I = 0.20 m (NaCl).  相似文献   

20.
The kinetics of the reaction of manganese(III) with oxalic acid (OA) has been studied in H2SO4 solutions. Under the experimental conditions of 6 × 10–3 <>0 < 0.4=" mol=">–3 and [H2SO4]0 0.2 mol dm–3 the observed pseudo-first order rate constant k obs follows the expression
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号