首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary In this paper we present excess molar volumes and excess molar enthalpies of binary and ternary mixtures containing propyl propanoate, hexane and cyclohexane as components at 298.15 K. Excess molar volumes were calculated from the density of the pure liquids and mixtures. The density was measured using an Anton Paar DMA 60/602 vibrating-tube densimeter. Excess molar enthalpies were obtained using a Calvet microcalorimeter  相似文献   

2.
Densities have been measured as a function of composition for ternary-pseudobinary mixtures of [(benzene + toluene or methylcyclohexane) + (cyclohexane + toluene or methylcyclohexane)] by means of a vibrating-tube densimeter at atmospheric pressure and the temperature 298.15 K. The excess molar volumes, VmE, were calculated from the densities and correlated using the Redlich–Kister equation to estimate the coefficients and standard errors. The experimental and calculated quantities are used to discuss the mixing behavior of the components. The results show the third component, toluene and methylcyclohexane, influences the interaction between benzene and cyclohexane.  相似文献   

3.
The vapour pressuresof liquid cyclohexane + N, N, N′, N′-tetramethylalkanediamine, (CH3)2 N(CH2)uN(CH3)2 (u = 1,2) + cyclohexane mixtures were measured by a static method between 303.15 and 343.15 K at 10 K intervals. The excess molar enthalpies at 303.15 K were also measured.

The molar excess Gibbs energies, calculated from the vapour-liquid equilibrium data, and the molar excess enthalpies compare satisfactorily with group contribution (DISQUAC) predictions.

The proximity effect of N atoms produces a regular decrease of the interactional parameters.  相似文献   


4.
Microcalorimetric measurements of excess molar enthalpies, at 298.15 K, are reported for the two ternary systems formed by mixing either diisopropyl ether or 2-methyltetrahydrofuran with binary mixtures of cyclohexane and n-heptane. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that useful estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

5.
Measurements of excess molar enthalpies at 25°C in a flow microcalorimeter, are reported for the two ternary mixtures 2-methyltetrahydrofuran + 2, 2, 4-trimethylpentane + methylcyclohexane and 2-methyltetrahydrofuran + n-heptane + methylcyclohexane. Smooth representations of the results are described and used to construct constant-enthalpy contours on Roozeboom diagrams. It is shown that useful estimates of the ternary enthalpies can be obtained from the Liebermann–Fried model using only the physical properties of the components and their binary mixtures.  相似文献   

6.
Microcalorimetric measurements of excess molar enthalpies, at 298.15 K, are reported for the four binary systems formed by mixing 1-hexene with the cycloalkanes: cyclohexane and methylcyclohexane, and with the aromatic hydrocarcons: benzene and toluene. Smooth Redlich-Kister representations of the results are presented. It was found that the Liebermann-Fried model also provided good representations of the results.  相似文献   

7.
8.
《Fluid Phase Equilibria》1999,164(1):143-155
Viscosities of the ternary mixture (cyclohexane+tetrahydrofuran+chlorocyclohexane) and the binary mixtures (cyclohexane+tetrahydrofuran and cyclohexane+chlorocyclohexane) have been measured at normal pressure at the temperatures of 298.15 and 313.15 K. The viscosity data for the binary and ternary mixtures were fitted to a McAllister-type equation [R.A. McAllister, AIChE J. 6 (1960) 427–431]. Viscosity deviations for the binary and ternary mixtures were fitted to Redlich–Kister's and Cibulka's equations [I. Cibulka, Coll. Czech. Chem. Commun. 47 (1982) 1414–1419]. The group contribution method proposed by Wu [D.T. Wu, Fluid Phase Equilib. 30 (1986) 149–156] has been used to predict the viscosity of the binary and ternary systems.  相似文献   

9.
Excess molar enthalpies of (2- butanone  +  cyclohexane, or methylcyclohexane, or toluene, or chlorobenzene, or cyclohexanone) and excess molar heat capacities of (2- butanone  +  benzene, or toluene, or chlorobenzene, or cyclohexanone) were measured atT =  298.15 K. Aliphatic systems were endothermic and the chlorobenzene system was exothermic. On the other hand, the toluene system changed sign to be S-shaped similar to the benzene system reported by Kiyohara et al. The values of excess molar enthalpies of the present mixtures were slightly larger than the corresponding mixtures of cyclohexanone already reported. Excess molar heat capacities of aromatic systems were characteristically S-shaped for the mixture containing aromatics. The values of the present mixtures were less than the corresponding mixtures of cyclohexanone. The mixture (2-butanone  +  cyclohexanone) was endothermic forHmE and negative for Cp,mE.  相似文献   

10.
The isothermal excess molar enthalpies for binary mixtures of different amines with water were measured with a C-80 Setaram calorimeter. The experimental results indicate that the excess molar enthalpy is related to the molecular structure. The experimental excess molar enthalpies were satisfactorily fitted with the Redlich–Kister equation. They were also used to test the suitability of the NRTL model, and the deviations are a little larger than the R–K equation.  相似文献   

11.
Densities of mixtures of 1,2-dichloroethane + benzene, + toluene, + p-xylene, + cyclohexane, and + methylcyclohexane were measured at 298.15 K over the whole concentration range by means of a vibrating-tube densimeter. Molar excess volumes were calculated from the results and compared to values obtained by interpolation or extrapolation of literature data.  相似文献   

12.
Calorimetric measurements of excess molar enthalpies are reported for (methylcyclohexane + n-butanol or n-pentanol or n-hexanol) at 323.15 K. To each set of results variable-degree polynomials were fitted by the least-squares method.  相似文献   

13.
The following properties of mixtures of the butanols with cyclohexane were measured over the whole range of composition: 1-butanol+cyclohexane and 2-butanol+cyclohexane; excess enthalpies at 15, 25, 35 and 45°C, excess volumes at 25 and 45°C, activity coefficients and excess Gibbs free energies at 45°C. 2-Methylpropan-2-ol (tertiary butanol)+cyclohexane; excess enthalpies at 26, 35, and 45°C, excess volumes at 26 and 45°C, activity coefficients and excess Gibbs free energies at 45°C. From these data, activity coefficients at the temperatures of the excess enthalpy measurements below 45°C have been computed, as a source of test data for models of alcohol association through hydrogen bonding.  相似文献   

14.
Binary mixtures of dimethylsulfoxide (DMSO) with alkane, benzene, toluene 1-alkanol, or 1-alkyne have been investigated in terms of DISQUAC. The corresponding interaction parameters are reported. ERAS parameters for 1-alkanol + DMSO mixtures are also given. ERAS calculations were developed considering DMSO as a not self-associated compound.

DISQUAC represents fairly well a complete set of thermodynamic properties: molar excess enthalpies, molar excess Gibbs energies, vapor–liquid equilibria, natural logarithms of activity coefficients at infinite dilution, or partial molar excess enthalpies at infinite dilution. DISQUAC improves UNIFAC calculations for H E . Both models yield similar results for VLE. In addition, DISQUAC also improves, ERAS results for 1-alkanol + DMSO mixtures. This may be due to ERAS cannot represent the strong dipole–dipole interactions present in such solutions.  相似文献   

15.
With an isothermal dilution calorimeter excess enthalpies have been determined at 298.15 K for 2-propanol + cyclohexane and 2-propanol + benzene + cyclohexane mixtures. The results are fitted with an associated-solution model. Predicted excess enthalpies for the ternary mixture agree well with the experimental results.  相似文献   

16.
Excess molar volumes, excess molar enthalpies and speeds of sound of 1-methyl pyrrolidin-2-one?+?o- or m- or p-xylene binary mixtures have been measured over the entire composition range at 308.15?K. The speed of sound data were used to determine the excess isentropic compressibilities. It is observed that while the values of the excess molar enthalpies for the investigated mixtures are positive, the values of the excess molar volumes and excess isentropic compressibilities are negative over the entire composition range. The measured thermodynamic data have been analyzed in terms of Graph, Prigogine?CFlory?CPatterson, and the Sanchez and Lacombe theories. It is observed that Graph theory correctly predicts the signs and magnitudes of the excess molar volumes, excess molar enthalpies, and excess isentropic compressibilities of the studied mixtures. However, the excess molar volumes, excess molar enthalpies and excess isentropic compressibilities predicted by Prigogine?CFlory?CPatterson and Sanchez and Lacombe theories are of same sign.  相似文献   

17.
Excess molar volumes, VmE, have been obtained as a function of composition for ternary-pseudobinary mixtures of [(benzene + cyclohexane or methylcyclohexane) + (propionitrile + cyclohexane or methylcyclohexane)] from the densities measured by means of a vibrating-tube densimeter at atmospheric pressure and a temperature of 298.15 K. The values of VmE have been correlated using the Redlich–Kister equation to estimate the coefficients and standard errors. The experimental and calculated quantities are used to discuss the mixing behavior of the components. The results show that the third component, cyclohexane or methylcyclohexane, has a significant effect on the interaction between benzene and propionitrile.  相似文献   

18.
Measurements of excess molar enthalpies at 25°C in a flow microcalorimeter,are reported for the two ternary mixtures 2,2-dimethylbutane + cyclohexane +n-octane and 2,2-dimethylbutane + cyclohexane + n-dodecane. Smoothrepresentations of the results are described and used to construct constant enthalpy contourson Roozeboom diagrams. It is shown that useful estimates of the ternary enthalpiescan be obtained from the Flory theory using only the physical properties of thecomponents and their binary mixtures.  相似文献   

19.
20.
The excess molar enthalpies of binary solvent mixtures of 1-butanol and 2-methyl-2-propanol with aniline, N-methylaniline, and N,N-dimethylaniline were measured with a flow microcalorimeter at 40°C. The excess enthalpies are positive for all the systems, and smaller for the mixtures of 1-butanol than the corresponding mixtures of 2-methyl-2-propanol. With respect to the anilines, the values increase in the order aniline < N-methylaniline < N,N-dimethylaniline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号