首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial correlation properties of apertured partially coherent beams propagating through atmospheric turbulence are studied in detail. By using the quadratic approximation of the Rytov’s phase structure function and the finite complex Gaussian expansion of the aperture function, the closed-form expression for the spectral degree of coherence of apertured partially coherent beams in turbulence is derived. It is shown that the larger the aperture width h is, and the smaller the spatial correlation length σ0 of the source is, the less the spatial correlation is affected by turbulence. Specially, the influence of turbulence on the spatial correlation for unapertured partially coherent beams is less than that for apertured ones. The spectral degree of coherence is shown to possess phase singularities for apertured partially coherent beams, but the phase singularities behavior disappears when the turbulence is strong enough, which is very different from the behavior of unapertured partially coherent beams. In addition, a comparison between the width of the spectral degree of coherence and that of the spectral intensity of apertured partially coherent beams in turbulence is also given, and some interesting results are obtained. The results are interpreted physically. PACS  42.68.Bz; 42.79.Ag; 42.25.Fx  相似文献   

2.
陈晓文  汤明玥  季小玲 《物理学报》2008,57(4):2607-2613
基于广义惠更斯-菲涅耳原理,并采用Rytov相位结构函数二次近似,推导出了部分相干厄米-高斯(H-G)光束通过大气湍流传输的光谱相干度公式,研究了湍流对光束的空间相干特性的影响.研究表明,部分相干H-G光束通过大气湍流传输其光谱相干度会出现振荡和相位奇异现象,但随着湍流的增强,振荡减弱,直至振荡和相位奇异现象消失,这一特性与高斯-谢尔模型光束的差异很大.光束的相干参数越小,光束空间相干性受湍流的影响也越小.此外,还研究了光谱相干度二阶矩宽度与光谱强度二阶矩宽度间的关系,得到一些有意义的结果,并给出了合理的 关键词: 部分相干厄米-高斯光束 大气湍流 光谱相干度 二阶矩宽度  相似文献   

3.
In an assessment of PIV measurement accuracy under practical experimental circumstances, grid-generated turbulence in its early decay (x/M=13.6–15.2,Re λ≈25) has been studied. Since a real-time processor was used, it was practical to acquire a statistically significant sample size of 3000 vector maps so that accurate turbulence statistics could be calculated. Results include moments of velocity components and spatial structures in terms of auto-correlations, turbulence scales and spectra. Data fall within limits of standard error estimates. This study demonstrates the need for large sample sizes, particularly for higher order statistics.  相似文献   

4.
A stereoscopic PIV (Particle Image Velocimetry) technique has been employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was measured using particle images captured simultaneously by two CCD cameras installed in the angular displacement configuration. 400 instantaneous velocity fields were acquired for each of four different blade phases of 0°, 18°, 36° and 54°. They were ensemble averaged to investigate the spatial evolution of propeller wake in the near wake region up to one propeller diameter (D) downstream. The phase-averaged velocity fields show clearly the viscous wake formed by the boundary layers developed along both surfaces of the blade. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the locations of tip and trailing vortices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the viscous dissipation, turbulence diffusion and blade-to-blade interaction. The difference in the mean velocity fields measured by SPIV and 2-D PIV methods was about 5% ≈ 10%. However, the 2-D PIV results also give sufficient information on propeller wake beyond the region of X/D=0.2.  相似文献   

5.

Abstract  

An experimental study to evaluate dynamic structures of flow motion and turbulence characteristics in bubble-driven water flow in a rectangular tank with a varying flow rate of compressed air is conducted. Liquid flow fields are measured by time-resolved particle image velocimetry (PIV) with fluorescent tracer particles to eliminate diffused reflections, and by an image intensifier to acquire enhanced clean particle images. By proper orthogonal decomposition (POD) analysis, the energy distributions of spatial and temporal modes are acquired. Time-averaged velocity and turbulent kinetic energy distributions are varied with the air flow rates. With increasing Reynolds number, bubble-induced turbulent motion becomes dominant rather than the recirculating flow near the side wall. Detailed spatial structures and the unsteady behavior of dominant dynamic modes associated with turbulent kinetic energy distributions are addressed.  相似文献   

6.
The analytical expression of partially coherent Hermite–cosh-Gaussian (HChG) beams propagating through atmospheric turbulence is derived and used to study their propagation properties through atmospheric turbulence. It is shown that partially coherent HChG beams propagating through atmospheric turbulence undergo several stages of evolution and a decrease of the spatial correlation length speeds up the evolution process. The smaller the spatial correlation length and the larger the beam orders are, the less the beam-width spreading of partially coherent HChG beams is affected by turbulence. At a sufficiently long propagation distance the beam-width spreading of partially coherent HChG beams with smaller Ch-part parameter and smaller waist width is less affected by turbulence. The results are illustrated by numerical examples, and the validity of the results is interpreted physically.  相似文献   

7.
In this paper, the spectral degree of coherence formula was derived by using the generalized Huygens–Fresnel principle and the method of Rytov phase structure function quadratic approximation. The spatial coherence of vortex Gaussian beams passed atmospheric turbulence was studied. It showed that the spatial coherence was mainly affected by the coherence of light source, the number of topological charges and the transmission distance. The distance of transmission was farther, the spatial coherence of beam was better. The number of topological charges were more, the spatial coherence of beam was better. In a certain transmission distance, the coherence of light source was better, the spatial coherence of beam was worse. In addition, there were coherent vortexes which spectral degree of coherence was zero after the partially coherent vortex beams getting through atmospheric turbulence transmission.  相似文献   

8.
This work investigates the joint effects of jet engine exhaust-induced turbulence and atmospheric turbulence on the propagation of a partially coherent Gaussian Schell-model Array (GSMA) vortex beam. Using the two-process propagation method, analytical formulae are derived for the cross-spectral density, spectral density, degree of coherence, and beam width of the considered beam. The results show that the considered beam takes different shapes; when the spatial coherence is large, the spectral density of the GSMA vortex beam takes an elliptical shape, whereas when the spatial coherence is smaller, the spectral density remains a Gaussian shape. The evolution profile of the degree of coherence weakens gradually when the propagation distance, topological charge, and turbulence strength increase. Moreover, the profile of the degree of coherence takes the Gaussian profile when the propagation distance is longer or turbulence atmospheric is stronger. Furthermore, the results reveal that the corresponding beam spreads faster with a larger propagation distance, lower spatial coherence, and high-strength turbulence. This study also concludes from the results that the beam is affected more when its propagation is near the jet engine exhaust, which means that this latter has a significant impact.  相似文献   

9.
The paper reports on shape of a three-dimensional coherent structure in a velocity field of a high-swirl turbulent jet with the bubble-type vortex breakdown. A set of the 3D instantenous velocity fields was measured by using the tomographic particle image velocimetry (tomographic PIV) technique and processed by the proper orthogonal decomposition (POD) method. The detected intensive coherent velocity component corresponded to a helical vortex core of the swirling jet and two secondary spiral vortices. The entire coherent structure was rotating around the jet axis in compliance with the direction of the flow swirl. From the 3D data it is concluded that the dynamics of the strsucture can be described by a traveling wave equation: Re[A(y, r)·e i(mθ + ky - ωt)] with the number of the spiral mode m = +1 for positively defined k and ω.  相似文献   

10.
We demonstrate an all-optical bump-on-tail instability by considering the nonlinear interaction of two partially coherent spatial beams. For weak wave coupling, we observe momentum transfer with no variation in intensity. For strong wave coupling, modulations appear in intensity and evidence appears for wave (Langmuir) collapse at large scales. Borrowing plasma language, these limits represent regimes of weak and strong spatial optical turbulence. In both limits, the internal spectral energy redistribution is observed by recording and reconstructing a hologram of the evolving dynamics. The results are universal and can appear in any wave-kinetic system with short-wave-long-wave coupling.  相似文献   

11.
According to the characteristics of coherent structures in near-wall turbulence, an accurate extraction and verification method is developed based on wavelet transform (WT) and correlation analysis in this paper. At first, the fluid field of a turbulent boundary layer is measured precisely in a gravitational low-speed water tunnel. On the basis of the distribution of the coherent structures, velocity data of three test points are selected and analyzed, whose dimensionless heights are 20.8, 33.5, and 42.6. According to the frequency range of power spectrum density (PSD), coherent and incoherent structures are both extracted from the original signals using continuous and orthogonal wavelet transforms. To confirm the validity of the extracted signals, the probability density function (PDF) of each extracted signal is calculated. The result demonstrates that the incoherent structures obey the Gaussian distribution, while the coherent structures deviate from the Gaussian distribution. The PDFs of the coherent structures and the original signals are similar, which shows that the coherent structures make most contributions to the turbulence. For further verification, a correlation parameter between coherent and incoherent structures is defined, which evidently proves the validity of the extraction method in this paper.  相似文献   

12.
激光空间相干性对照明均匀性的影响   总被引:5,自引:4,他引:1       下载免费PDF全文
 研究了激光相干性对照明均匀性的影响,为照明激光器的选择提供了理论参考。其中,部分相干高斯光束分解为模式间相互独立的厄米-高斯光束的迭加。采用相位屏的近似处理方法对激光通过大气湍流的传输进行计算模拟。数值模拟的结果表明:当照明光束的空间相干性降低时,其照明均匀度逐步提高。因此对于照明激光器而言,选择空间相干性较差的激光器对其照明均匀度更加有益。  相似文献   

13.
光谱消光法广泛应用于颗粒粒径测量领域,在利用光谱消光法对颗粒粒径进行反演的过程中,由于颗粒的消光系数存在理论复杂、计算繁琐、收敛速度慢以及求解不稳定等问题,很大程度上影响了整个反演过程的快速性和准确性。且在众多波长的消光数据中,存在较多重复冗余的信息,也很大程度上增加了反演算法的时间。针对光谱消光法粒径反演算法计算繁琐、反演效率低的问题,提出了基于主成分分析(PCA)和BP神经网络的光谱消光颗粒粒径分析方法。基于Mie散射理论对不同粒径、不同波长下的光谱消光值进行了仿真计算,通过对光谱消光数据集的主成分分析及各个波长综合载荷系数的计算,实现了最优特征波长的选取,利用降维后的光谱消光数据训练了PCA-BP神经网络模型,并利用该网络模型计算了粒径颗粒分布。通过仿真计算,比较了PCA-BP神经网络模型与传统的BP神经网络模型的预测精度,并分析了波长数目对两种神经网络模型预测结果的影响。针对训练得到的PCA-BP神经网络模型开展光谱消光法粒径参数反演算法的验证实验,搭建了光谱消光法颗粒粒径参数测量实验系统,测量了粒径范围在0.5~9.7 μm内的6种不同粒径参数的聚苯乙烯标准颗粒。仿真和实验结果表明:基于主成分分析方法可确定各个波长向量之间的相关性,利用综合载荷系数选取最优特征波长对应的消光值对整体的光谱数据具有较好的代表性,可实现光谱数据的降维。相比传统的BP神经网络模型,基于PCA-BP神经网络模型的颗粒粒径分布的分析方法预测精度更高,对于较分散颗粒系的分布参数的预测有更加明显的优势。而且,被选取的波长数较少时,PCA-BP神经网络模型依然有较高的预测精度。利用训练好的PCA-BP神经网络模型对颗粒粒径参数进行实验验证,预测结果可瞬时输出,颗粒粒径分布误差在5%以内,验证了该算法的可行性。  相似文献   

14.
We present some characteristic features of the interaction between a resonant laser pulse and a dense atomic medium (barium vapor). A spectral analysis of the coherent transmitted light displays side bands related to the Rabi frequency. A study of the spatial behaviour of the laser beam shows that light filaments are generated and we specify in what experimental situation (light intensity, atomic concentration) this phenomenon takes place. Starting from Maxwell-Bloch equations for a resonantly driven two-level atomic system we built a computation code whose numerical results are in good agreement with our experiments.  相似文献   

15.
While it has long been a practice to place spires near the inlet of a wind tunnel to quickly develop a turbulent boundary layer with similarities to an atmospheric boundary layer, this has not been the case for creating turbulent boundary layer inflow in large eddy simulations (LESs) of turbulent flows. We carry out LES with the curvilinear immersed boundary method to simulate the flow in a wind tunnel with a series of spires in order to investigate the feasibility of numerically developing inflow conditions from a precursory spire LES and assessing the similarities of the turbulence statistics to those of an atmospheric boundary layer. The simulated mean velocity field demonstrates that a turbulent boundary layer with height equal to the spire height develops very quickly, within five spire heights downstream. The major attribute of using spires for precursory simulations is the spatially evolving coherent structures that form downstream of the spires offering a range of length scales at both the vertical and streamwise directions allowing multiple turbulent inflow conditions to be extracted from a single simulation. While the distribution of length scales far from the spires resembles an atmospheric boundary layer, some turbulence statistics have some significant differences.  相似文献   

16.
We introduce a measure to quantify spatiotemporal turbulence in extended systems. It is based on the statistical analysis of a coherent structure decomposition of the evolving system. Applied to a cellular excitable medium and a reaction-diffusion model describing the oxidation of CO on Pt(100), it reveals power-law scaling of the size distribution of coherent space-time structures for the state of spiral turbulence. The coherent structure decomposition is also used to define an entropy measure, which sharply increases in these systems at the transition to turbulence.  相似文献   

17.
Attenuation of second sound in helium II has been used to observe up to 6 orders of magnitude of decaying vorticity displaying four distinctly different regimes of decaying grid turbulence in a finite channel. A purely classical spectral model for homogeneous and isotropic turbulence describes most of the decay of helium II vorticity in the temperature range 1.2相似文献   

18.
We report a numerical study, supplemented by phenomenological explanations, of "energy condensation" in forced 2D turbulence in a biperiodic box. Condensation is a finite size effect which occurs after the standard inverse cascade reaches the size of the system. It leads to the emergence of a coherent vortex dipole. We show that the time growth of the dipole is self-similar, and it contains most of the injected energy, thus resulting in an energy spectrum which is markedly steeper than the standard k{-5/3} one. Once the coherent component is subtracted, however, the remaining fluctuations have a spectrum close to k{-1}. The fluctuations decay slowly as the coherent part grows.  相似文献   

19.
Conclusions The available experimental data on spectral line broadening for monochromatic radio waves propagating in the circumsolar plasma indicate the presence within the spatial spectrum of plasma inhomogeneities of an internal turbulence scale, the effect of which manifests itself in the finite values of the moments of the energy density distribution over frequency and in normatization of the spectral line form in the strong signal scattering regime. Theoretical analysis of line broadening produced by moving inhomogeneities in the solar corona has established a relationship between the second and fourth moments of the spectrum and the turbulence characteristics, permitting determination of the radial profile of the internal inhomogeneity scale for a known velocity of motion. According to Venera 10 data, the internal turbulence scale of the circumsolar plasma is of the order of magnitude of several km at distances of 5–10 solar radii and increases sharply with radial distanee. The change in the value of the internal turbulence scale with distance is of the same type as the dependence of ionic gyroradius on distance to the sun.Analysis of spectral broadening of radio signals is an effective means of studying such characteristics of inhomogeneities in the circumsolar plasma as the form of the spatial spectrum, the intensity of inhomogeneities, their rate of motion, the internal turbulence scale, and the radial profiles of these quantities. Simultaneously, the peculiarities discovered in the behavior of the spatial spectrum of the inhomogeneities require the completion of a stricter analysis of line broadening with consideration of radial variation of both the internal and external turbulence scales, a process which may explain other peculiarities of the spectral broadening of radio signals in the moderate and intense scattering regimes.Institute of Radio Technology and Electronics, Academy of Sciences of the USSR. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 22, No. 9, pp. 1051–1060, September, 1979.  相似文献   

20.
Quantitatively investigating error correction ability in frequency domain is important for computer controlled optical surfacing (CCOS) process to correct different spatial frequency errors. Based on the mathematical model coherence between filtering and material removal process of CCOS, a method is proposed to quantitatively evaluate the correction ability of CCOS process. A generalized model named normalized smoothing spectral function (SSF) will be established combine convolution model of CCOS and power spectral density (PSD) function. A set of polishing experiments are performed to calculate SSF curves and validate SSF model. By comparing the results of SSF curve with PSD curve and surface figure, it reveals that SSF curve can quantitatively indicate the correction ability of CCOS process for different spatial frequency errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号