首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
毛细管电泳电化学检测法测定烟草中的多元酚   总被引:5,自引:1,他引:5  
采用毛细管电泳电化学检测法同时测定了烟草中的多元酚,即芦丁、绿原酸,槲皮素和咖啡酸。考察了工作电极的氧化电位、运行缓冲溶液浓度和pH值,分离电压和进样时间对分离和检测的影响。在优化条件下,以300μm直径的碳圆盘电极为工作电极,检测电位为+0.9 V(vs.SCE),在50 mmol/L硼酸盐(pH 8.4)的运行缓冲液中,被测物浓度与峰电流在三个数量级范围内呈良好线性,检出限为2×10-7或5×10-7g/mL。方法有着良好的重现性,被测组分的迁移时间和峰高的相对标准偏差(RSDs)小于4%(n=7)。单次测定可在16 min内完成,已用于实际样品多元酚的测定,样品处理简单,无须预富集。  相似文献   

2.
毛细管电泳-电化学检测法测定饲料中的磺胺类药物   总被引:1,自引:0,他引:1  
采用毛细管电泳-电化学检测法(CE-ED),对饲料中的6种磺胺类药物磺胺脒、磺胺二甲嘧啶、磺胺甲嘧啶、磺胺二甲氧嘧啶、磺胺嘧啶、磺胺甲恶唑进行了分离和测定。分别考察了工作电极电位、运行缓冲液的pH和浓度、分离电压和进样时间等实验参数对实验结果的影响。在优化的实验条件下,以直径300μm的碳圆盘电极为工作电极,检测电位为0.95 V(vs.SCE),在30 mmol/L硼砂-KH2PO4(pH7.6)的运行缓冲溶液中,6个分析物能够在16 min内实现很好的基线分离,被测物浓度与峰电流在3个数量级呈良好的线性,检出限(S/N=3)范围0.08~0.20μg/mL。该方法已应用于实际样品的分析。  相似文献   

3.
A method of separation and determination of homovanillic acid (HVA) and vanillylmandelic acid (VMA) was developed based on capillary zone electrophoresis/amperometric detection with high sensitivity, good resolution and selectivity. In order to achieve complete separation and good response, several factors including pH, buffer concentration, separation voltage, detection potential and the length of separation capillary, were studied in detail. The method has been used to determine both HVA and VMA in human urine. Uric acid (UA) in human urine did not interference with their determination. The limit of detection of the method was 1.3×10−6 mol/l (1.4 fmol) for HVA and 7.9×10−7 mol/l (0.87 fmol) for VMA at a signal-to-noise ratio of 3.  相似文献   

4.
建立了毛细管电泳电化学法对盐酸克伦特罗、特布他林和沙丁胺醇进行分离检测。方法采用胶束电泳体系,以铂圆盘为工作电极,考察了检测电位、缓冲液浓度和pH、十二烷基硫酸钠(SDS)浓度、分离电压等因素的影响。3个分离物在10 kV的分离电压、缓冲体系为15 mmol/L(pH 9.0)硼砂+20 mmol/L SDS条件下得到分离。盐酸克伦特罗、特布他林和沙丁胺醇的线性范围分别为2.0~400,3.5~700,5.0~1000μg/L。方法已用于猪肉样品的检测。  相似文献   

5.
Five flavonoids (catechin, hyperoside, quercitrin, quercetin, and rutin) were separated and determined by capillary electrophoresis with electrochemical detection. Effects of several important factors, such as the pH and concentration of running buffer, separation voltage, injection time, and detection potential were investigated to determine the optimum conditions. The five flavonoids were baseline separated within 20 min in a 60 cm length capillary at a separation voltage of 19.5 kV with a running buffer consisting of 60 mmoL/L Na2B4O7 - 120 mmoL/L NaH2PO4 (pH = 8.8). The relationship between peak current and analyte concentration was linear over about two orders of magnitude with detection limits (S/N = 3) ranging from 0.02 to 0.05 microg/mL for all compounds. This method was successfully used to determine the above five flavonoids in Agrimonia pilosa Ledeb. with relatively simple extraction procedures, and the assay results were satisfactory.  相似文献   

6.
Summary Capillary electrophoresis (CE) has been employed for the separation of monoamine transmitters (MAs) and tyrosine (Tyr), combined with electrochemical detection (ED) at a carbon disc electrode. The effects of several factors such as the acidity and concentration of running buffer, the separation voltage, the potential applied to the working electrode and the injection time were investigated to find the optimum conditions. Detection limits (S/N=3) ranged from 48.8 to 315.4 nmol·L−1, and the response was linear over 3 order of magnitude for MAs and Tyr. The proposed method was successfully applied to determine MAs and Tyr in the cerebral cortex, thalamus and spinal cord of rats with satisfactory assay results.  相似文献   

7.
Amino acids in individual human lymphocytes were determined by capillary zone electrophoresis with electrochemical detection (ED) at a carbon fiber bundle electrode after on-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA) and CN. In order to inject cells easily, a cell injector was designed. In this method, a single human lymphocyte and then the lysing/derivatizing buffer were electrokinetically injected into the front end of the separation capillary as a chamber to lyse the lymphocyte and derivatize amino acids in the cell. Four amino acids (serine (Ser), alanine (Ala), taurine (Tau), and glycine (Gly)) in single human lymphocytes have been identified. Quantitation has been accomplished through the use of calibration curves.  相似文献   

8.
Capillary zone electrophoresis (CZE) was employed for the determination of vincristine using electrochemical detection with a carbon fiber microdisk bundle electrode at a constant potential of 1.0 V versus saturated calomel electrode (SCE). The optimum conditions of separation and detection are 1.7×10−2 Na2HPO4− 3.2×10−3 mol/l NaH2PO4 (pH 7.5) for the buffer solution, 20 kV for the separation voltage. The limit of detection is 5.0×10−7 mol/l or 2.2 fmol (S/N=3) for the injection voltage of 5 kV and the injection time of 10 s. The recovery of the method is between 95 and 101% for the vincristine taken by human erythrocytes. The method was applied to investigate uptake and accumulation behavior of vincristine for human erythrocytes. The advantages of the method are the small sample volume of CZE and the high selectivity and sensitivity of electrochemical detection.  相似文献   

9.
毛细管电泳电化学检测法同时测定三种氨基酸的电离常数   总被引:2,自引:1,他引:1  
利用自制微圆盘铜电极,建立了一种毛细管电泳电化学检测同时测定色氨酸、丝氨酸和半胱氨酸pKα值的新方法。在不同pH条件下测定各氨基酸的有效淌度(μeff),利用Origin软件对μeff-[H^+]按理论关系式进行非线性拟合,得到其pKα值。该方法简便、快速,测定值与文献值符合良好。  相似文献   

10.
Vickers JA  Henry CS 《Electrophoresis》2005,26(24):4641-4647
There is a need to develop broadly applicable, highly sensitive detection methods for microchip CE that do not require analyte derivatization. LIF is highly sensitive but typically requires analyte derivatization. Electrochemistry provides an alternative method for direct analyte detection; however, in its most common form, direct current (DC) amperometry, it is limited to a small number of easily oxidizable or reducible analytes. Pulsed amperometric detection (PAD) is an alternative waveform that can increase the number of electrochemically detectable analytes. Increasing sensitivity for electrochemical detection (EC) and PAD requires the isolation of detection current (nA) from the separation current (muA) in a process generally referred to as current decoupling. Here, we present the development of a simple integrated decoupler to improve sensitivity and its coupling with PAD. A Pd microwire is used as the cathode for decoupling and a second Au or Pt wire is used as the working electrode for either EC or PAD. The electrode system is easy to make, requiring no clean-room facilities or specialized metallization systems. Sensitive detection of a wide range of analytes is shown to be possible using this system. Using this system we were able to achieve detection limits as low as 5 nM for dopamine, 74 nM for glutathione, and 100 nM for glucose.  相似文献   

11.
Our efforts have been focused on developing a self-contained and transportable microfabricated electrophoresis (CE) system with integrated electrochemical detection (ED). The current prototype includes all necessary electrodes “on-chip” and utilizes miniaturized CE and ED supporting electronics custom designed for this purpose. State-of-the-art design/modeling tools and novel microfabrication procedures were used to create recessed platinum electrodes with complex geometries and the CE/ED device from two patterned ultra-flat glass substrates. The electrodes in the bottom substrate were formed by a self-aligned etch and deposition technique followed by a photolithographic lift-off process. The microchannels (20 μm deep×65 μm wide (average)) were chemically etched into the top substrate followed by thermal bonding to complete the microchip device. CE/ED experiments were performed using 0.02 M phosphate buffer (pH 6), an analyte/buffer solution (2.2 mM dopamine, 2.3 mM catechol) and varying separation voltages (0-500 V) with a custom electronics unit interfaced to a laptop computer for data acquisition. Detection limits (S/N=3) were found to be at the micromolar level and a linear detection response was observed up to millimolar concentrations for dopamine and catechol. The microchip CE/ED system injected 50 pl volumes of sample, which corresponded to mass detection limits on the order of 200 amol. For the first time, an integrated “on-chip” multi-electrode array CE/ED device was successfully designed, fabricated and tested. The majority of the electrodes (six out of eight) in the array were capable of detecting dopamine with the amplitude of the signal (i.e., peak heights) decreasing as the electrode distance from the channel exit increased.  相似文献   

12.
运用毛细管电泳-电导检测方法对4种四环素衍生物——土霉素(OTC)、金霉素(CTC)、强力霉素(DOC)和四环素(TC)的分离进行了研究。在3.5mmol/L三羟基氨基甲烷(Tris)-7.5mmol/L柠檬酸(Cit)pH4.0的运行缓冲液中,4种四环素衍生物在15min内获得完全分离。四环素衍生物的线性范围分别为5.0-500μg/mL OTC,3.6-420μg/mL CTC,4.5-470μg/mL DOC和2.5-400μg/mL TC。检测限(S/N=3)分别为OTC2.0μg/mL,CTC 1.8μg/mL,DOC2.5μg/mL和TC1.0μg/mL。采用本法对实际样品强力霉素片中强力霉素和土霉素片中土霉素进行测定,回收率分别为97.2%和96.4%。  相似文献   

13.
Pulsed electrochemical detection (PED) has progressed as a highly sensitive and selective detection technique following aqueous-based separation systems over the past three decades. The application of on-line pulsed potential cleaning to electrocatalytic noble metal electrodes has significantly increased the number of applications formerly achieved with conventional electrochemical (EC) detection. Electrochemical cells are easily miniaturized, providing the ability to apply detection by PED at microelectrodes and onto microchips utilizing electrophoretic separations. In addition, recent advances in PED waveforms and instrumentation have enabled the detection technique to be easily coupled with high pressure separation systems which require rapid detection to maintain separation integrity. As a result, advanced applications for the determination of carbohydrates as well as the expansion of PED for the detection of other organic aliphatic compounds have been recently accomplished. This review will focus on developments and methods utilizing PED following liquid chromatography (LC) and capillary electrophoresis (CE). Publications are reviewed in chronological order to emphasize the advancement of the detection method and the sustained relevance of its applications.  相似文献   

14.
A capillary electrophoretic method with UV detection for separation and quantitation of perfluorocarboxylic acids (PFCAs) from C6-PFCA to C12-PFCA has been developed. The optimization of measurement conditions included the choice of the most appropriate type and concentration of buffer in the background electrolyte (BGE), as well as the type and the content of an organic modifier. The optimal separation of investigated PFCAs was achieved with 50 mM phosphate buffer and 40% isopropanol in the BGE using direct UV detection. The optimum wavelength for direct UV detection was optimized at 190 nm. For indirect detection, several chromophores were studied. Five mM 3,5-Dinitrobenzoic acid (3,5-DNBA) in 20 mM phosphate buffer BGE and indirect UV detection at 280 nm gave the optimal detection and separation performance for the investigated PFCAs. The possibility of on-line preconcentration of solutes by stacking has been examined for indirect detection. The detection limits (LODs) determined for direct UV detection ranged from 2 microg/mL for C6-PFCA to 33 microg/mL for C12-PFCA. The LODs obtained for indirect UV detection were comparable to those obtained for direct UV detection.  相似文献   

15.
Chen G  Luo H  Ye J  Hu C 《Talanta》2001,54(6):316-1076
Capillary electrophoresis with electrochemical detection (CE-ED) was employed for the determination of hypaphorine (an alkaloid) and four oligomeric stilbenes (including pallidol, kobophenol A, miyabenol C and (+)--viniferin) in Radix seu Cortex Caraganae Sinicae, the root of Caragana sinica (Buc'hoz) Rehd. The effects of several important factors were investigated to find optimum conditions. The working electrode was a 300 μm diameter carbon disc electrode positioned opposite the outlet of capillary. The five analytes could be well separated within 12 min in a 40 cm length capillary at the separation voltage of 12 kV in a 100 mmol l−1 borate buffer (pH 10.0). The response was linear over about three orders of magnitude for all investigated compounds with detection limits (S/N=3) ranging from 0.0385 to 0.111 mg l−1. This proposed method has also been successfully applied to analyze the root of other Caragana plants.  相似文献   

16.
A new method for the electrophoretic separation of nine phenolic acids (derivatives of benzoic and cinnamic acids) with contactless conductometric detection is presented. Based on theoretical calculations, in which the mobility of the electrolyte co- and counterions and mobility of analytes are taken into consideration, the electrolyte composition and detection mode was selected. This approach was found to be especially valuable for optimization of the electrolyte composition for the separation of analytes having medium mobility. Indirect conductometric detection mode was superior to the direct mode as predicted theoretically. The best performance was achieved with 150 mM 2-amino-2-methylpropanol electrolyte at pH 11.6. The separation was carried out in a counter-electroosmotic mode and completed in less than 6 min. The LODs achieved were about 2.3-3.3 microM and could be further improved to 0.12-0.17 microM by using a sample stacking procedure. The method compares well to the UV-Vis detection.  相似文献   

17.
The clinical manifestations of gout result from the formation and deposition of uric acid (UA) crystals. The monitoring of UA level in less invasive biological samples such as saliva is suggested for diagnosis and therapy of gout, hyperuricemia and the Lesch–Nyhan syndrome. In order to investigate the correlation between trace amounts of UA in human saliva and urine and explore the potential application in fast diagnosis of gout, capillary electrophoresis with electrochemical detection (CE–ED) was applied for the determination of UA in human saliva and urine in this work. Under the optimum conditions, UA and three coexisting analytes could be well separated within 14 min at the separation voltage of 14 kV in 80 mmol L–1 borax running buffer (pH 7.8). A good linear relationship was established between peak current and concentration of analytes over two orders of magnitude with detection limits (S/N=3) ranging from 1.09×10–7 to 5.0×10–7 mol L–1 for all analytes. This proposed method has been successfully applied for study of the correlation between the UA content of human saliva and urine, providing an alternative and convenient method for rapid diagnosis of gout.  相似文献   

18.
You T  Yang X  Wang E 《Talanta》2000,51(6):1213-1218
Capillary electrophoresis (CE) with end-column electrochemical detection (EC) of barbituric acid (BA) and 2-thiobarbituric acid (TA) has been described. Under optimum condition, BA and TA were separated satisfactorily, and a response of high sensitivity and stability was obtained at a detection potential of 1.25 V versus Ag/AgCl. Optimized end-column detection provides detection limit as low as 0.5 and 0.1 μM for BA and TA, respectively. The calibration graph was linear over three orders of magnitude. The relative standard deviations (n=10) of peak currents and migration times obtained for both BA and TA were 3.4, 3.7, and 1.7, 1.2%, respectively. The proposed method has been applied to analyze water sample with satisfactory results.  相似文献   

19.
Qiu H  Yin XB  Yan J  Zhao X  Yang X  Wang E 《Electrophoresis》2005,26(3):687-693
A simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection scheme was introduced to both microchip and conventional capillary electrophoresis (CE). In this dual detection scheme, tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) was used as an ECL reagent as well as a catalyst (in the formation of Ru(bpy)3(3+)) for the EC detection. In the Ru(bpy)3(2+)-ECL process, Ru(bpy)3(3+) was generated and then reacted with analytes resulting in an ECL emission and a great current enhancement in EC detection due to the catalysis of Ru(bpy)3(3+). The current response and ECL signals were monitored simultaneously. In the experiments, dopamine and three kinds of pharmaceuticals, anisodamine, ofloxacin, and lidocaine, were selected to validate this dual detection strategy. Typically, for the EC detection of dopamine with the presence of Ru(bpy)3(2+), a approximately 5 times higher signal-to-noise ratio (S/N) can be achieved than that without Ru(bpy)3(2+), during the simultaneous EC and ECL detection of a mixture of dopamine and lidocaine using CE separation. The results indicated that this dual EC and ECL detection strategy could provide a simple and convenient detection method for analysis of more kinds of analytes in CE separation than the single EC or ECL detection alone, and more information of analytes could be achieved in analytical applications simultaneously.  相似文献   

20.
This paper describes the enhanced separation of adenine (A), hypoxanthine (HX), 8-azaadenine (8-AA), thymine (T), cytosine (C), uracil (U) and guanine (G) by CZE dispersing carboxylic multiwalled carbon nanotubes (c-MWNTs) into the running buffer. The effect of important factors such as c-MWNT nanoparticle concentration, the acidity and concentration of running buffer, and separation voltage were investigated to acquire the optimum conditions. The seven purine and pyrimidine bases could be well separated within 16 min in a 35 cm effective length fused-silica capillary at a separation voltage of +8.0 kV in a 23 mM tetraborate buffer (pH 9.2) containing 8.0 x 10(-5) g/mL c-MWNTs. Under the optimal conditions, the linear ranges were of 2-250 microg/mL for A (R2 = 0.995), 3-200 microg/mL for U (R2 = 0.990) and G (R2 = 0.992), 3-250 microg/mL for T (R2 = 0.998), 2-200 microg/mL for C (R2 = 0.985) and 4-200 microg/mL for HX (R2 = 0.988) and 8-AA (R2 = 0.990). The detection limits were 0.9 microg/mL for A (S/N = 3), 2.4 microg/mL for U, 2.0 microg/mL for T, 1.5 microg/mL for C, 2.5 microg/mL for G and 3.0 microg/mL for HX and 8-AA. The proposed method was successfully applied for determining five purine and pyrimidine bases in yeast RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号