共查询到20条相似文献,搜索用时 15 毫秒
1.
A poly(4-vinylpyridine)/mercury film electrode (PVP/MFE) was used for the determination of trace thallium(III) by square-wave anodic stripping voltammetry (SWASV). Thallium(III) is preconcentrated onto the PVP/MFE as the anionic forms in chloride medium by the ion-exchange effect of the PVP. The high solubility of thallium in mercury further facilitates the accumulation effect. Various factors influencing the determination of thallium(III) were thoroughly investigated. This modified electrode displayed good resistance to interferences from surface-active compounds and common ions and increased sensitivity when used in conjunction with SWASV. In addition, detection can be achieved without deoxygenation and the electrode can be easily renewed. Applicability to various water samples is illustrated. 相似文献
2.
制备了聚谷氨酸修饰玻碳电极,通过循环伏安法和差分脉冲伏安法研究了槲皮素在该修饰电极上的电化学行为。在pH 5.00的B-R缓冲液中,槲皮素在修饰电极上于0.28 V(vs Ag/AgCl)电位处产生一个灵敏的DPV阳极氧化峰,氧化峰电流与槲皮素的浓度在1.0×10-8~5×10-5 mol/L的范围内呈良好的线性关系,最低检测限为4.0×10-9 mol/L。实验表明,聚谷氨酸修饰电极可提高槲皮素的检测灵敏度,该电极用于芦丁水解产物中槲皮素的检测,回收率为103.4%~104.5%。 相似文献
3.
4.
Simultaneous determination of chromium(III) and cadmium(II) by differential pulse anodic stripping voltammetry on a stannum film electrode 总被引:1,自引:0,他引:1
A stannum film electrode has been developed for the simultaneous determination of trace levels of chromium(III) and cadmium(II) by differential pulse anodic stripping voltammetry (DPASV). The stannum film electrode was generated in situ by depositing simultaneously the stannum film and the metals obtained by reduction of Cd(II) and Cr(III) at −1.4 V on a glassy carbon electrode. Then, the reduced products were oxidized by scanning the potential of the electrode from −1.4 to −0.4 V using DPASV. The electrode exhibited well-defined and separated stripping signals for both metals accompanied with a low background contribution. The possible mechanism of this design was proposed. Under the optimized working conditions, the detection limit was 2.0 and 1.1 μg l−1 for Cr(III) and Cd(II) at a deposition time of 3 min. Finally, the stannum film electrode was successfully applied to the determination of Cd(II) in tap water with satisfactory results. 相似文献
5.
Monolayers of 3,3′-dithiodipropionic acid (DTDPA) were prepared on a polycrystalline gold electrode through a self-assembly procedure to produce a gold 3,3′-dithiodipropionic acid self-assembled monolayer (AuDTDPA) modified electrode. The characterization of the AuDTDPA electrode was investigated by cyclic voltammetry and ac impedance using the [Fe(CN)6]3−/4− redox couple. The electrochemical behavior of DA on the modified electrode AuDTDPA was studied by cyclic and square-wave voltammetries, using phosphate buffer as supporting electrolyte. The oxidation peak current for DA increases linearly with concentration in the range of 0.35 × 10−5 to 3.4 × 10−5 mol L−1. The performance of the AuDTDPA modified electrode was evaluated for the electroanalytical determination of dopamine (DA) in a pharmaceutical formulation. The AuDTDPA modified electrode showed a stable behavior and the presence of surface-COOH groups avoided the passivation of the electrode surface during the dopamine oxidation. 相似文献
6.
Jaromíra Chýlková Renáta Šelešovská-Fadrná Jaroslava Machalíková 《Central European Journal of Chemistry》2007,5(2):479-495
The optimal process of pre-treatment and activation of gold rotating disc electrode (AuRDE) before voltammetric determination
of mercury is proposed. This treatment encompasses polishing of the electrode surface, electrochemical cycling, and activation.
This procedure both increases determination sensitivity as well as improves determination reproducibility. The detection limit
on the working electrode achieved using this approach amounted to 8.26·10−10 mol L−1for direct mercury determination in water solution (applying 200 s running accumulation). The procedure of the quantitative
mercury isolation from complicated sample matrix was developed as well. It provides better selectivity and significant increase
of sensitivity of mercury determination. In case of mercury isolation from one liter of water the detection limit is 6.23·10−11 mol L−1 (analyzing a greater sample volume the determined concentration could be lower).
相似文献
7.
A 4-(2-pyridylazo)-resorcinol (PAR)-modified carbon ceramic electrode (CCE) prepared by the sol-gel technique has been reported for the first time in this paper. By immersing the CCE in aqueous solution of PAR (0.001 mol L−1), after a short period of time, a thin film of PAR was rapidly formed on the surface of the electrode due to its strong adsorption properties. A differential pulse anodic stripping voltammetric (DPASV) method was developed for determination of Ag(I) at the modified carbon ceramic electrode. The analysis procedure consisted of an open circuit accumulation step in a sample solution which was continuously stirred for 12 min. This was followed by replacing the medium with a clean solution where the accumulated Ag(I) was reduced for 15 s in −0.6 V. Then, the potential was scanned from −0.2 to +0.2 V to obtain the voltammetric peak. The detection limit of silver(I) was 0.123 μg L−1, and for seven successive determinations of 10, 100 and 200 μg L−1 Ag(I), the relative standard deviations were 2.1, 1.4 and 1.03%, respectively. The calibration curve was linear for 0.5-300 μg L−1 silver(I). The procedure was applied to determine silver(I) in X-ray photographic films and super-alloy samples. 相似文献
8.
9.
This report described the direct voltammetric detection of peroxynitrite (ONOO−) at a novel cyanocobalamin modified glassy carbon electrode prepared by electropolymeriation method. The electrochemical behaviors of peroxynitrite at the modified electrode were studied by cyclic voltammetry. The results showed that this new electrochemical sensor exhibited an excellent electrocatalytic activity to oxidation of peroxynitrite. The mechanism of catalysis was discussed. Based on electrocatalytic oxidation of peroxynitrite at the poly(cyanocobalamin) modified electrode, peroxynitrite was sensitively detected by differential pulse voltammetry. Under optimum conditions, the anodic peak current was linear to concentration of peroxynitrite in the range of 2.0 × 10−6 to 3.0 × 10−4 mol L−1 with a detection limit of 1.0 × 10−7 mol L−1 (S/N of 3). The proposed method has been applied to determination of peroxynitrite in human serum with satisfactory results. This poly(cyanocobalamin) modified electrode showed high selectivity and sensitivity to peroxynitrite determination, which could be used in quantitative detection of peroxynitrite in vivo and in vitro. 相似文献
10.
The determination of cadmium using a carbon paste electrode modified with organofunctionalized amorphous silica with 2-benzothiazolethiol was investigated. The Cd(II) oxidation peak was observed around −0.80 V (vs. SCE) in phosphate buffer (pH 4.0) in differential pulse anodic stripping voltammetry. The best results were obtained under the following optimized conditions: 1 min accumulation time, 50 mV pulse amplitude, 20 mV s−1 scan rate in phosphate buffer pH 4.0. Using such parameters a linear dynamic range from 5.6×10−7 to 3.5×10−5 mol l−1 Cd(II) was observed with a sensitivity of 2.83 μA mol−1 l, limit of detection 1.0×10−7 mol l−1. Cd(II) spiked in a natural water sample was determined with 99% mean recovery at 10−7 mol l−1 level. Interference were also evaluated. 相似文献
11.
Anantha Iyengar Gopalan Kwang-Pill Lee Kalayil Manian Manesh Jun Heon Kim Jae Soo Kang 《Talanta》2007,71(4):1774-1781
A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Aunano-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10 nm. Electrochemical behavior of the PAT-Aunano-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Aunano-ME exhibits two well defined anodic peaks at the potential of 75 and 400 mV for the oxidation of AA and DA, respectively with a potential difference of 325 mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Aunano-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Aunano-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples. 相似文献
12.
13.
14.
A simple and effective chemically modified carbon paste electrode (CMCPE) for the simultaneous determination of lead(II) and cadmium(II) was developed in this work. The electrode was prepared by the addition of diacetyldioxime into a carbon paste mixture. Pb2+ and Cd2+ were preconcentrated on the surface of the modified electrode by complexing with diacetyldioxime and reduced at a negative potential (−1.10 V). Then the reduced products were oxidized by differential pulse stripping. The fact that two stripping peaks appeared on the voltammograms at the potentials of −0.65 V (Cd2+) and −0.91 V (Pb2+) demonstrates the possibility of simultaneous determination of Pb2+ and Cd2+. Under the optimized working conditions, calibration graphs were linear in the concentration ranges of 1.0×10−7-1.5×10−5 mol l−1 (Pb2+) and 2.5×10−7-2.5×10−5 mol l−1 (Cd2+), respectively. For 5 min preconcentration, detection limits of 1×10−8 mol l−1 (Pb2+) and 4×10−8 mol l−1 (Cd2+) were obtained at the signal noise ratio (SNR) of 3. To evaluate the reproducibility of the newly developed electrode, the measurements of 5×10−7 mol l−1 Pb2+ and Cd2+ were parallel carried out for six times at different electrodes and the relative standard deviations were 2.9% (Pb2+) and 3.2% (Cd2+), respectively. Interferences by some metals were investigated. Only Ni2+ and Hg2+ apparently affected the peak currents of Pb2+ and Cd2+. The diacetyldioxime modified carbon paste electrode was applied to the determination of Pb2+ and Cd2+ in water samples. The results indicate that this electrode is sensitive and effective for the simultaneous determination of Pb2+ and Cd2+. 相似文献
15.
The reduction of 4-nitrophenol (4-NP) has been carried out on a modified glassy carbon electrode using cyclic and differential pulse voltammetry (DPV). The sensor was prepared by modifying the electrode with lithium tetracyanoethylenide (LiTCNE) and poly-l-lysine (PLL) film. With this modified electrode 4-NP was reduced at −0.7 V versus SCE. The sensor presented better performance in 0.1 mol l−1 acetate buffer at pH 4.0. The other experimental parameters, such as concentration of LiTCNE and PLL, pulse amplitude and scan rate were optimized. Under optimized operational conditions, a linear response range from 27 up to 23200 nmol l−1 was obtained with a sensitivity of 3.057 nA l nmol−1 cm−2. The detection limit for 4-NP determination was 7.5 nmol l−1. The proposed sensor presented good repeatability, evaluated in term of relative standard deviation (R.S.D.=4.4%) for n=10 and was applied for 4-NP determination in water samples. The average recovery for these samples was 103.0 (± 0.7)%. 相似文献
16.
Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode 总被引:1,自引:0,他引:1
A sensitive adsorptive stripping voltammetric protocol at a bismuth-coated glassy-carbon electrode for trace measurements of chromium (VI) in the presence of diethylenetriammine pentaacetic acid (DTPA) is described. The new protocol is based on accumulation of the Cr-DTPA complex at a preplated bismuth film electrode held at −0.80 V, followed by a negatively-going square-wave voltammetric waveform. Factors influencing the stripping performance including the film preparation, solution pH, DTPA and nitrate concentrations, deposition potential and deposition time, have been optimized. The resulting performance compares well with that observed for analogous measurements at mercury film electrodes. A preconcentration time of 7 min results in a detection limit of 0.3 nM Cr(VI) and after 2 min a relative standard deviation at 20 nM of 5.1% (n = 25). Applicability to river water samples is demonstrated. The attractive behavior of the new “mercury-free” chromium sensor holds great promise for on-site environmental and industrial monitoring of chromium (VI). Preliminary data in this direction using bismuth-coated screen-printed electrodes are encouraging. 相似文献
17.
Yang G Wang C Zhang R Wang C Qu Q Hu X 《Bioelectrochemistry (Amsterdam, Netherlands)》2008,73(1):37-42
Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results. 相似文献
18.
The preparation of Hg(II)-modified multi walled carbon nanotube (MWCNT) by reaction of oxidized MWCNT with aqueous HgCl2 was carried out. The Hg(II)-modified multi walled carbon nanotube (Hg(II)/MWCNT) dispersed in Nafion solution was used to coat the polished graphite electrode surface. The Hg(II)/MWCNT modified graphite electrode was held at a cathodic potential (−1.0 V) to reduce the coordinated Hg(II) to Hg forming nanodroplets of Hg. The modified electrode was characterized by FESEM/EDAX which provided useful insights on the morphology of the electrode. The SEM images showed droplets of Hg in the size of around 260 nm uniformly distributed on the MWCNT. Differential pulse anodic stripping voltammetry (DPASV) and electrochemical impedance spectroscopy were used to study the Hg(II) binding with MWCNT. Differential pulse anodic stripping voltammetry of ppb levels of cadmium and lead using the modified electrode yielded well-defined peaks with low background current under a short deposition time. Detection limit of 0.94 and 1.8 ng L−1 were obtained following a 3 min deposition for Pb(II) and Cd(II), respectively. Various experimental parameters were characterized and optimized. High reproducibility was observed from the RSD values for 20 repetitive measurements of Pb(II) and Cd(II) (1.7 and 1.9%, respectively). The determination of Pb(II) and Cd(II) in tap water and Pb(II) in human hair samples was carried out. The above method of fabrication of Hg(II)/MWCNT modified graphite electrode clearly suggests a safe route for preparing Hg immobilized electrode for stripping analysis. 相似文献
19.
20.
Gongjun Yang Xilong Qu Ming Shen Chengyin Wang Qishu Qu Xiaoya Hu 《Mikrochimica acta》2008,160(1-2):275-281
Poly(phenol red) (denoted as PPR) films were electrochemically synthesized on the surface of a glassy carbon electrode (GCE)
by cyclic voltammetry to obtain a chemically modified electrode (denoted as PPR-GCE). The growth mechanism of PPR films was
studied by attenuated total reflection spectroscopy. This PPR-GCE was used to develop a novel and reliable method for the
determination of trace Pb2+ by anodic stripping differential pulse voltammetry. At optimum conditions, the anodic peak exhibits a good linear concentration
dependence in the range from 5.0 × 10−9 to 5.0 × 10−7 mol L−1 (r = 0.9989). The detection limit is 2.0 × 10−9 mol L−1 (S/N = 3). The method was employed to determine trace levels of Pb2+ in industrial waste water samples.
Correspondence: Gongjun Yang, Ming Shen, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002,
P.R. China 相似文献