首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang RJ  Zhuang ZX  Tai Y  Huang RF  Wang XR  Lee FS 《Talanta》2006,68(3):728-734
The purpose of this study is to develop and apply a mercury analyzer system capable of quantitative analysis of mercury in Traditional Chinese Medicines (TCM) drugs in the concentrations range from ng g−1 to mg g−1. No sample pre-treatment was needed and this greatly simplifies the analytical procedure and minimizes potential sources of contamination. The precisions of analyzing solid mercury standard sample and real TCM materials were 2.1% and 2.5-8.2%, respectively; and the recovery based on the analysis of standard reference materials ranged from 95.2% to 105%. The performance of the method has been compared with inductively coupled plasma-mass spectrometry (ICP-MS) technique and excellent agreements were observed between the two methods. The method has been applied to the investigation of Hg content in several TCM drugs containing or not containing cinnabar. Mercury concentration in the same TCM products differs widely with different manufacturers, suggesting that external contamination and the Hg presence in raw herbal materials are the main sources of Hg. In addition, comparison of mercury thermal releasing profiles between TCM drug and cinnabar suggests that mercury conversion from cinnabar to biological matrices-bound Hg could occur because of the aid of other ingredients in the formulated drug.  相似文献   

2.
The content of trace elements in arsenic and antimony minerals from the Allchar mine, Macedonia, was determined by electrothermal atomic absorption spectrometry (ETAAS) and k0-instrumental neutron activation analysis (k0-INAA) after removal of arsenic and antimony. Their direct determination by ETAAS or k0-INAA in arsenic (realgar and orpiment) and antimony (stibnite) minerals is limited by strong matrix interferences from As and Sb. Successful elimination of both elements was realized by the extraction of their iodide complexes into toluene. It was found that the optimal conditions were triple extraction of arsenic into toluene from 6mol·L–1 HCl with addition of KI. Triple extraction of antimony was most successful in the system 4.5mol·L–1 H2SO4 and KI into toluene. In both cases, trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were then detected in the aqueous phase by ETAAS. The proposed procedures with ETAAS were checked by the method of standard additions and Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn determined in realgar, orpiment and stibnite. Using k0-INAA the trace elements Ba, Ce, Co, Cr, Cs, Fe, Hg, Sc, Tb, Th, U and Zn in realgar and orpiment were determined before and after As and Sb removal from the same aliquot of sample. The removal of both elements with KI into toluene was higher than 99.8% and no losses of trace elements were observed.  相似文献   

3.
A simple, fast, and sensitive method for speciation and determination of As (III, V) and Hg (II, R) in human blood samples based on ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) and flow injection hydride generation/cold vapor atomic absorption spectrometry (FI-HG/CV-AAS) has been developed. Tetraethylthiuram disulfide, mixed ionic liquids (hydrophobic and hydrophilic ILs) and acetone were used in the DLLME step as the chelating agent, extraction and dispersive solvents, respectively. Using a microwave assisted-UV system, organic mercury (R-Hg) was converted to Hg(II) and total mercury amount was measured in blood samples by the presented method. Total arsenic content was determined by reducing As(V) to As(III) with potassium iodide and ascorbic acid in a hydrochloric acid solution. Finally, As(V) and R-Hg were determined by mathematically subtracting the As(III) and Hg(II) content from the total arsenic and mercury, respectively. Under optimum conditions, linear range and detection limit (3σ) of 0.1–5.0 µg L?1 and 0.02 µg L?1 for As(III) and 0.15–8.50 µg L?1 and 0.03 µg L?1 for Hg(II) were achieved, respectively, at low RSD values of < 4% (N = 10). The developed method was successfully applied to determine the ultra-trace amounts of arsenic and mercury species in blood samples; the validation of the method was performed using standard reference materials.  相似文献   

4.
A rapid and efficient closed vessel microwave-assisted extraction (MAE) method based on acidic leaching was developed and optimized for the extraction of total mercury (Hg), inorganic mercury (Hg2+) and methylmercury (CH3Hg+) from fish tissues. The quantitative extraction of total Hg and mercury species from biological samples was achieved by using 5 mol L−1 HCl and 0.25 mol L−1 NaCl during 10 min at 60 °C. Total Hg content was determined using inductively coupled plasma mass spectrometry (ICP-MS). Mercury species were measured by liquid chromatography hyphenated with inductively coupled plasma mass spectrometry (LC-ICP-MS). The method was validated using biological certified reference materials ERM-CE464, DOLT-3, and NIST SRM-1946. The analytical results were in good agreement with the certified reference values of total Hg and CH3Hg+ at a 95% confidence level. Further, accuracy validation using speciated isotope-dilution mass spectrometry (SIDMS, as described in the EPA Method 6800) was carried out. SIDMS was also applied to study and correct for unwanted species transformation reactions during and/or after sample preparation steps. For the studied reference materials, no statistically significant transformation between mercury species was observed during the extraction and determination procedures. The proposed method was successfully applied to fish tissues with good agreement between SIDMS results and external calibration (EC) results. Interspecies transformations in fish tissues were slightly higher than certified reference materials due to differences in matrix composition. Depending on the type of fish tissue, up to 10.24% of Hg2+ was methylated and up to 1.75% of CH3Hg+ was demethylated to Hg2+.  相似文献   

5.
As prerequisite for the investigation of arsenic-binding proteins in plants, the general influence of different extraction parameters on the binding behaviour of arsenic to the plant protein pool was investigated. The concentration of the extraction buffer affected the extraction yield both for proteins and for arsenic revealing an optimal buffer concentration of 5 mM Tris/HCl, pH 8. The addition of 1 or 2% (w/v) SDS to the extraction buffer produced a two- to threefold enhancement of the total protein extraction yield but strongly suppressed the simultaneous extraction of arsenic from 80 ± 8% extraction yield obtained without SDS to 48 ± 2% in presence of 2% (w/v) SDS. The arsenic binding capacity of the protein fraction obtained after extraction with Tris buffer and protein precipitation by trichloroacetic acid in acetone was estimated to be 1.4 ± 0.6% independently on the original spiking concentration of arsenic provided in the form of monomethylarsonate to the extracts. Due to the low total protein concentrations of the plant extracts that varied in the range from 75 to 412 μg mL−1 depending on the extraction parameters, high arsenic concentrations of 263-1001 mg (kg protein mass)−1 resulted for spiking concentrations of 10 mg As L−1. The optimized protein isolation procedure was applied to plants grown under arsenic exposure and revealed a similar arsenic binding capacity as for the spiked protein extracts.  相似文献   

6.
Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2′-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4 M HNO3. The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 μmol g−1 for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 μg L−1 (3σ), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 μg L−1 Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.  相似文献   

7.
A new method for solid-phase extraction and preconcentration of trace amounts Hg(II) from environmental samples was developed by using sodium dodecyle sulphate-coated magnetite nanoparticles (SDS-coated Fe3O4 NPs) as a new extractant. The procedure is based on the adsorption of the analyte, as mercury-Michler's thioketone [Hg2(TMK)4]2+ complex on the negatively charged surface of the SDS-coated Fe3O4 NPs and then elution of the preconcentrated mercury from the surface of the SDS-coated Fe3O4 NPs prior to its determination by flow injection inductively coupled plasma-optical emission spectrometry. The effects of pH, TMK concentration, SDS and Fe3O4 NPs amounts, eluent type, sample volume and interfering ions on the recovery of the analyte were investigated. Under optimized conditions, the calibration curve was linear in the range of 0.2-100 ng mL−1 with r2 = 0.9994 (n = 8). The limit of detection for Hg(II) determination was 0.04 ng mL−1. Also, relative standard deviation (R.S.D.) for the determination of 2 and 50 ng mL−1 of Hg(II) was 5.2 and 4.7% (n = 6), respectively. Due to the quantitative extraction of Hg(II) from 1000 mL of the sample solution an enhancement factor as large as 1230-fold can be obtained. The proposed method has been validated using a certified reference materials, and also the method has been applied successfully for the determination of Hg(II) in aqueous samples.  相似文献   

8.
A novel on-line coupled capillary electrophoresis (CE) cold vapor generation (CVG) with electrothermal quartz tube furnace atomic absorption spectrometry (EQTF-AAS) system for mercury speciation has been developed. The mercury species (inorganic mercury and methylmercury) were completely separated by CE in a 80 cm length × 100 μm i.d. fused-silica capillary at 20 kV and using a buffer of 100 mM boric acid and 10% (v/v) methanol (pH 8.30). The effects of the inner diameter of quartz tube, the acidity of HCl, the NaBH4 concentration and N2 flow rate on Hg signal intensity were investigated. Speciation of mercury was highlighted using CE-CVG-EQTF-AAS. The detection limits of methylmercury and mercury were 0.035 and 0.027 μg mL−1, respectively. The precisions (RSDs) of peak height for six replicate injections of a mixture of 10 μg mL−1 (as Hg) were better than 4%. The interface was used for speciation analysis of mercury in dry goldfish muscle.  相似文献   

9.
Solid sample graphite furnace atomic absorption spectroscopy (SS-GFAAS) has been proposed since its appearance as a good alternative to wet methods of analysis in many matrices. Here, we examine the use of SS-GFAAS for total and leachable arsenic determination in sediments from distinct origins.Our direct analysis of seven selected sediments was not always free of spectral matrix interference, but the spectroscopic technique gave very good results for (a) direct arsenic measurement in solid residues from a range of leaching processes, (b) total arsenic determination (HNO3 leaching test) and (c) the evaluation of its potential remobilisation (modified BCR three-step sequential extraction scheme). For the optimised instrumental conditions, the analysis limit was 0.44 mg kg−1 and long-term reproducibility was between 10-15%.The sum of leachable arsenic in HNO3 65% and the residual fraction, gave recoveries from 72 to 118% of total arsenic content. These results are a good alternative to other cumbersome wet methods involving HF.  相似文献   

10.
Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g−1. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g−1, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g−1). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 μg g−1) and generally high arsenate (As(V)) concentrations (up to 77 μg g−1) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.  相似文献   

11.
A high-pressure microwave digestion was applied for microwave-assisted extraction (MAE) of mercury species from sediments and zoobenthos samples. A mixture containing 3 mol L−1 HCl, 50% aqueous methanol and 0.2 mol L−1 citric acid (for masking co-extracted Fe3+) was selected as the most suitable extraction agent. The efficiency of proposed extraction method was better than 95% with R.S.D. below 6%. A preconcentration method utilizing a “homemade” C18 solid phase extraction (SPE) microcolumns was developed to enhance sensitivity of the mercury species determination using on-column complex formation of mercury-2-mercaptophenol complexes. Methanol was chosen for counter-current elution of the retained mercury complexes achieving a preconcentration factor as much as 1000. The preconcentration method was applied for the speciation analysis of mercury in river water samples. The high-performance liquid chromatography-cold vapour atomic fluorescence spectrometric (HPLC/CV-AFS) method was used for the speciation analysis of mercury. The complete separation of four mercury species was achieved by an isocratic elution of aqueous methanol (65%/35%) on a Zorbax SB-C18 column (4.6 mm × 150 mm, 5 μm) using the same complexation reagent (2-mercaptophenol). The limits of detection were 4.3 μg L−1 for methylmercury (MeHg+), 1.4 μg L−1 for ethylmercury (EtHg+), 0.8 μg L−1 for inorganic mercury (Hg2+), 0.8 μg L−1 for phenylmercury (PhHg+).  相似文献   

12.
Dong LM  Yan XP 《Talanta》2005,65(3):627-631
A new flow injection on-line sequential extraction procedure coupled with hydride generation atomic fluorescence spectrometry (HG-AFS) was developed for rapid and automatic fractionation of arsenic in soils. The developed methodology involved a three-step sequential extraction procedure with deionized water, KOH solution, and HCl solution. 25 mg of the soil sample packed into a microcolumn (4 mm i.d. × 3 cm long) was dynamically extracted by continuously pumping each individual extractant through the column. The extracted arsenic solution was merged with 4% (m/v) K2S2O8 solution for on-line oxidation of all arsenic species into AsV. The total extracted arsenic was on-line detected by HG-AFS, and quantitated using an on-line standard addition calibration strategy. The total time for the three-step sequential extraction and on-line detection lasted only 10 min. The developed methodology offers several advantages over conventional batch sequential extraction protocols, including minimization of readsorption/redistribution problem, improvement of accuracy, high speed, less amounts of sample/reagents required, less risk of contamination and analyte loss. The developed methodology was successfully applied to the fractionation of arsenic in certified soil reference materials.  相似文献   

13.
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg−1 to mg kg−1. However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0–1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (AsIII), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (AsV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean ± standard deviation μg kg−1) AsB (107 ± 4), AsIII (113 ± 7), AsV (7 ± 2), MMA (51 ± 5), DMA (64 ± 6), Roxarsone (18 ± 1), and four unidentified arsenic species (approximate concentration 1–10 μg kg−1).  相似文献   

14.
Li X  Wang Z 《Analytica chimica acta》2007,588(2):179-183
A novel method for determination of mercury was developed using an intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry (IF-ECVG-AFS). The mercury vapor was generated on the surface of glassy carbon cathode in the flow cell. The operating conditions for the electrochemical generation of mercury vapor were investigated in detail, and the interferences from various ions were evaluated. Under the optimized conditions, no evident memory effects of mercury were observed. The calibration curve was linear up to 5 μg L−1 Hg at 0.54 A cm−2. A detection limit of 1.2 ng L−1 Hg and a relative standard deviation of 1.8% for 1 μg L−1 Hg were obtained. The accuracy of method was verified by the determination of mercury in the certified reference human hair. The ECVG avoided the use of reductants, thereby greatly reducing the contamination sources. In addition, the manifold of IF-ECVG-AFS was simple and amenable to automation.  相似文献   

15.
A method for the simultaneous preconcentration and determination of Hg(II) and MeHg(I) at the ng ml−1 level has been developed. This method is based on solid phase extraction using a newly synthesized chelating resin containing nitrogen and sulphur donor sites of the 1,2-bis(o-aminophenylthio)ethane moiety that is very selective for mercury. The characterization of the resin has been carried out by elemental analyses, infrared spectral data, thermogravimetric analysis and metal ion capacities. The resin is highly selective for Hg(II) and MeHg(I) with an exchange capacity of 0.38 and 0.30 mmol g−1, respectively. Various parameters like pH, column flow rate, desorbing agents are optimized. Cold vapour atomic absorption spectrometry (CVAAS) was used to measure the concentration of both species of mercury. The calibration graph was linear upto 10 ng ml−1 with a 3σ detection limit of 0.09 ng ml−1. The recovery of Hg(II) and MeHg(I) was found to be 98.9±2.0 and 98.0±1.1%, respectively. The method has been used for routine determination of trace levels of mercury species in natural waters to comply with more stringent regulations.  相似文献   

16.
A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L− 1 H3PO4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g− 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.  相似文献   

17.
The multi-metal-binding MT fractions in rat tissues after oral intake of cinnabar were characterized by hyphenated size-exclusion chromatography (SEC) and inductively coupled plasma mass spectrometry (ICP–MS). With the increase of both the feeding time and dosage of cinnabar the amounts of Hg-binding MT fractions in rat kidney of groups fed cinnabar increased significantly compared with the control group. Meanwhile, more Cu-binding MT were synthesized in the rat kidney, which confirmed the manipulating effect of MT in the homeostasis of Cu for detoxification of nephritic mercury. Although the Hg-binding MT fractions in rat liver of all cinnabar groups were almost independent of cinnabar dosage (2.5–5.0 g kg–1 bw) and feeding time (2–4 weeks), the amount was much higher than that of the control group. The amounts of Hg-MT in other rat tissues of the cinnabar groups and the control group were compared and their significance is discussed.  相似文献   

18.
A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L− 1 KBr in 6 mol L− 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L− 1 HCl and 2.5% m/v NaBH4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g− 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.  相似文献   

19.
In this paper, carbon nanofibers (CNFs) as a novel solid phase extraction sorbent were developed for speciation preconcentration and separation of inorganic arsenic species As(III) and As(V) prior to determination by inductively coupled plasma mass spectrometry (ICP-MS). It was found that during all the steps of the separation, As(III) was selectively sorbed on the microcolumn packed with CNFs within a pH range of 1.0-3.0 in the presence of ammonium pyrroinedithiocarbamate (APDC), while As(V) was passed through the microcolumn without the retention. Various experimental parameters affecting the separation and determination of As(III) and As(V) have been investigated in detail. Under the optimized conditions, the detection limits of this method for As(III) were 0.0045 ng mL−1 with an enrichment factor of 33 and 0.24 ng mL−1 for As(V), and the relative standard deviations for As(III) and As(V) were 2.6% and 1.9% (n = 9, c = 1.0 ng mL−1), respectively. In order to verify the accuracy of the method, a certified reference of water sample was analyzed, and the results obtained were in good agreement with the certified values. The proposed method was applied for the analysis of inorganic arsenic species in groundwater and lake water with the recovery of 92-106%.  相似文献   

20.
A new approach for developing a cloud point extraction-electrothermal atomic absorption spectrometry has been described and used for determination of arsenic. The method is based on phase separation phenomenon of non-ionic surfactants in aqueous solutions. After reaction of As(V) with molybdate towards a yellow heteropoly acid complex in sulfuric acid medium and increasing the temperature to 55 °C, analytes are quantitatively extracted to the non-ionic surfactant-rich phase (Triton X-114) after centrifugation.To decrease the viscosity of the extract and to allow its pipetting by the autosampler, 100 μl methanol was added to the surfactant-rich phase. An amount of 20 μl of this solution plus 10 μl of 0.1% m/v Pd(NO3)2 were injected into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry.Total inorganic arsenic(III, V) was extracted similarly after oxidation of As(III) to As(V) with KMnO4. As(III) was calculated by difference. After optimization of the extraction condition and the instrumental parameters, a detection limit (3σB) of 0.01 μg l−1 with enrichment factor of 52.5 was achieved for only 10 ml of sample. The analytical curve was linear in the concentration range of 0.02-0.35 μg l−1. Relative standard deviations were lower than 5%. The method was successfully applied to the determination of As(III) and As(V) in tap water and total arsenic in biological samples (hair and nail).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号