首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abdollahi H  Zeinali S 《Talanta》2004,62(1):151-163
The use of H-point curve isolation (HPCIM) and H-point standard addition methods (HPSAM) for spectrophotometric studies of complex formation equilibria are proposed. One step complex formation, two successive stepwise and mononuclear complex formation systems, and competitive complexation systems are studied successfully by the proposed methods. HPCIM is used for extracting the spectrum of complex or sum of complex species and HPSAM is used for calculation of equilibrium concentrations of ligand for each sample. The outputs of these procedures are complete concentration profiles of equilibrium system, spectral profile of intermediate components, and good estimation of conditional formation constants. The reliability of the method is evaluated using model data. Spectrophotometric studies of murexide-calcium, dithizone-nickel, methyl thymol blue (MTB)-copper, and competition of murexide and sulfate ions for complexation with zinc, are used as experimental model systems with different complexation stoichiometries and spectral overlapping of involved components.  相似文献   

2.
H-point standard addition method (HPSAM) is suggested as a simple and selective method for the determination of semicarbazide and hydrazine. The reduction of Cu2+ to Cu+ by semicarbazide and hydrazine in the presence of neocuproine (Nc) and the subsequent complex formation between Cu+ and Nc produced a sensitive spectrophotometric method for indirect determination of semicarbazide and hydrazine. The difference in the rate of reduction of Cu2+ with semicarbazide and hydrazine in cationic micellar media is the basis of this method. Semicarbazide can be determined in the range of 0.5-3.75 μg ml−1 with satisfactory accuracy and precision in the presence of excess hydrazine. The proposed method was successfully applied to the simultaneous determination of semicarbazide (0.5-3.75 μg ml−1) and hydrazine (0.5-5 μg ml−1) and also to the selective determination of semicarbazide in the presence of hydrazine in several synthetic mixtures containing different concentration ratios of semicarbazide and hydrazine.  相似文献   

3.
Afkhami A  Zarei AR 《Talanta》2004,62(3):559-565
H-point standard addition method (HPSAM) was applied to the simultaneous determination of hydrazine and phenylhydrazine. The method is based on the hydrazone formation reactions of hydrazine and phenylhydrazine in the presence of micellar sodium dodecyl sulfate (SDS). Mixed reagents of p-(dimethylamino)benzaldehyde (DAB) and p-nitrobenzaldehyde (NB) was used as selective chromogenic reagents for hydrazine and phenylhydrazine. Hydrazine and phenylhydrazine can be determined simultaneously in the range 0.020-0.50 and 0.20-10.0 μg ml−1, respectively. The results allowed that simultaneous determination could be performed with the ratio 1:500 to 1:10 hydrazine-phenylhydrazine. Under working conditions, the proposed method was successfully applied to the simultaneous determination of hydrazine and phenylhydrazine in several synthetic mixtures and plasma and water samples.  相似文献   

4.
Afkhami A  Zarei AR 《Talanta》2003,60(1):63-71
The H-point standard addition method (HPSAM), based on spectrophotometric measurement, for simultaneous determination of periodate-bromate and iodate-bromate mixtures is described. This method is based on the difference between the rates of their reactions with iodide in acidic media. The results showed that simultaneous determinations could be performed with the ratio 1:15-12:1 for periodate-bromate and 15:1-1:15 for iodate-bromate. The proposed method was successfully applied to the simultaneous determination of periodate-bromate and iodate-bromate in water and synthetic samples.  相似文献   

5.
The H-point standard addition method (HPSAM) was applied to kinetic data for simultaneous determination of Sb(V) and Sb(III) and also selectively determines Sb(V) in the presence of Sb(III). The method is based on the differences between rate of complexation of pyrogallol red with Sb(V) and Sb(III) at pH=2. Sb(V) can be determined in the range of 0.3-2.0 μg ml−1 with satisfactory accuracy and precision in the presence of excess Sb(III). Good selectivity was obtained over the variety of metal ions. The proposed method was used for determination of Sb(V) and Sb(III) in river and spring water samples.  相似文献   

6.
Hasani M  Yaghoubi L  Abdollahi H 《Talanta》2006,68(5):1528-1535
H-point standard addition method, HPSAM, with simultaneous addition of three analytes is proposed for the resolution of ternary mixtures. It is a modification of the previously described H-point standard addition method that permits the resolution of three species from a unique calibration set by making the simultaneous addition of the three analytes. The method calculates the analyte concentration from spectral data at two wavelengths where the two species selected as interferents present the same absorbance relationship. These wavelength pairs are easily found, and can be selected to give the most precise results. Diethyldithiocarbomate (DDC) in a cationic micellar solution of cetyltrimethylammonium bromide (CTAB) was used for determination of Fe(II), Co(II) and Cu(II) at pH 5.50. The results showed that simultaneous determination of Fe(II), Co(II) and Cu(II) could be preformed in the range of 0.0–6.0, 0.0–8.0 and 0.0–12.0 μg ml−1, respectively. The proposed method was successfully applied to the simultaneous determination of Fe(II), Co(II) and Cu(II) in several synthetic mixtures containing different concentration of Fe(II), Co(II) and Cu(II).  相似文献   

7.
Sabry SM  Khamis EF 《Talanta》2000,51(6):159-1231
H-point standard additions method (HPSAM), based on spectrophotometric and spectrofluorimetric measurements, was proposed for simultaneous determination of glafenine (G) and glafenic acid (GA). A study of the absorption spectra of G and GA in various pH media has been carried out. Reasonably resolved UV-absorption spectra were obtained with a solution adjusted at pH 4.5 with citric acid–phosphate buffer. Additionally, the fluorescence properties in aqueous micellar systems of anionic, cationic and non-ionic surfactants were investigated. Well resolved fluorescence spectra were established in aqueous Triton X-100 solution at pH 7.8 (citric acid–phosphate buffer). As a comparative method, UV-derivative spectrophotometry (based on zero-crossing technique) was suggested. First-derivative value at 352 nm (1D352) and second-derivative value at 366 nm (2D366) were selected for the quantification of G and GA, respectively. The relative standard deviations of the proposed methods approximate 2%. The proposed methods were evaluated through the analysis of commercial tablets. The results were accurate and precise.  相似文献   

8.
The H-point standard addition method (HPSAM), based on a spectrophotometric measurement for the simultaneous determination of hydrazine and acetylhydrazine, is described. This method is based on the difference between the rates of their reactions with N,N-dimethylaminobenzaldehyde (DAB) in the presence of sodium dodecyl sulfate (SDS) in acidic media. The results showed that hydrazine and acetylhydrazine could be determined simultaneously in the range of 0.020 - 0.70 and 0.20 - 5.0 mg L(-1), respectively. Under the working conditions, the proposed method was successfully applied to the simultaneous determination of hydrazine and acetylhydrazine in several synthetic mixtures and plasma and water samples.  相似文献   

9.
A simple, sensitive and selective spectrophotometric method for the simultaneous determination of Co(II) and Pd(II) using partial least square (PLS) calibration and H-point standard addition method is described. The method is based on the complex formation of Co(II) and Pd(II) with 4-(2-pyridylazo) resorcinol (PAR) in acidic media and in the presence of sodium dodecyl sulfate (SDS) as a micellizing agent. Acidic media and the presence of a micellar system improve selectivity and sensitivity, respectively. By applying PLS calibration, Co(II) and Pd(II) can be determined in the range of 0.20-2.0 and 0.40-4.0 microg ml(-1), respectively. The relative errors of prediction for the determination of Co(II) and Pd(II) in the 10 prediction samples were 1.69 and 1.72%, respectively. The results of applying H-point standard addition method show that Co(II) and Pd(II) can be determined simultaneously with concentration ratio of Co(II) to Pd(II) varying between 7:1 and 1:8 in the mixed samples. Both proposed methods (PLS and HPSAM) were applied to the determination of Co(II) and Pd(II) in several alloy solutions with satisfactory results.  相似文献   

10.
Simultaneous determination of total iron and vanadium by H-point standard addition method (HPSAM) and partial least squares (PLS) is described. Gallic acid (GA) in a cationic micellar solution of CTAB was used for determination of iron and vanadium in different oxidation states at pH 5. The presence of a micellar system enables total iron and vanadium to be determined with improved sensitivities. The total relative standard error for applying the PLS method to 15 synthetic samples in the ranges 0.20–15.00 μg ml−1 iron and 0.20–8.00 μg ml−1 vanadium was 2.2%. The results of applying the H-point standard addition method showed that iron and vanadium can be determined simultaneously with the concentration ratios of iron to vanadium from 10:1 to 1:20 in the mixed sample. Both HPSAM and PLS methods showed suitable abilities to resolve accurately overlapped absorption spectra of the compounds. Both proposed methods were successfully applied to the determination of Fe and V in several synthetic alloy solutions.  相似文献   

11.
12.
The present paper deals with the selection of variables for the H-point and generalised H-point standard additions methods (HPSAM and GHPSAM, respectively). Both methods are applied for the resolution of spectroscopic interfered signals in the UV-vis range. The HPSAM is a suitable method for the resolution of binary and ternary mixtures when the interferent is known. The GHPSAM is applied for the resolution of samples that contain unknown interferents. In this paper, a method based on the study of a principal components analysis (PCA) for the selection of variables for the HPSAM and GHPSAM is proposed. The PCA results show the isolation of the analyte signal from the sample signal, achieved by the application of the HPSAM and GHPSAM. It is showed that by means of the score and loading plots, it is possible to select the most appropriate variables without a priori establishing any condition.  相似文献   

13.
Summary Micellar electrokinetic capillary chromatography (MECC) has been investigated as an alternative mode of analyzing oligosaccharides released from glycoproteins. The influence on the separation of experimental parameters such as the concentrations of surfactant and electrolyte and the addition of divalent cations was examined. Solubilization, of neutral oligosaccharides by micelles was demonstrated whereas for the sialylated oligosaccharides the electrophoretic mobility remained the predominant factor. The addition of Mg++ to sodium dodecyl sulfate (SDS)solutions provided an effective means of enhancing the selectivioty of the separation through both an increase of the time window and the differential complexation of carbohydrate with this divalent cation.  相似文献   

14.
The H-point standard addition method (HPSAM) was applied to handling spectrophotometric data for simultaneous determination of Zn2+ and Cu2+ or selective determination of Zn2+ in the presence of Cu2+. The ligand 1-(2-pyridylazo)2-naphthol (PAN) and its metal complexes (Zn-PAN and Cu(II)-PAN) were made water-soluble by the neutral surfactant Triton X-100, and therefore, no extraction with organic solvents was required. The method is based on the difference in absorbance of formed complexes between Zn2+ and PAN, at two different wavelengths at pH = 9.2. The formation of both the complexes was complete within five minutes. Zn2+ can be determined in the range of 0.2–25 μg/mL with satisfactory accuracy and precision in the presence of excess of Cu2+ and most other metal ions. Interference effects of common anions and cations were studied. Under working conditions, the proposed method was successfully applied to the simultaneous determination of Zn2+ and Cu2+ in several real and synthetic mixtures with different concentration ratio of Zn2+ and Cu2+. The text was submitted by the authors in English.  相似文献   

15.
The micellar liquid chromatographic (MLC) separations of polycyclic aromatic hydrocarbons (PAHs) were optimized for three micellar systems, cetyltrimethylammonium chloride (CTAC), dodecyltrimethylammonium chloride (DTAC), and sodium dodecylsulfate (SDS), with 1-pentanol as the only organic additive. A difference in the separation was observed between CTAC and SDS/DTAC. Under each optimized separation conditions, CTAC-modified mobile phase provides the least desirable separation, which is attributed to its longer carbon tail (C16 vs. C12). In addition to 1-pentanol, the main organic additive, a second organic additive (3% 1-propanol) in the micelle-modified mobile phase was found to enhance the resolution of PAH chromatographic peaks. However, the extent of the enhancement varies for the different micellar systems, with the greatest resolution improvement seen for CTAC, and little effect for shorter-tail SDS and DTAC. This study shows the potential use of second organic additive (1-propanol), to the main nonpolar additive (1-pentanol), in facilitating the MLC separation of larger nonpolar compounds.  相似文献   

16.
The interaction of Procaine hydrochloride (PC) with cationic, anionic and non-ionic surfactants; cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and triton X-100, were investigated. The effect of ionic and non-ionic micelles on solubilization of Procaine in aqueous micellar solution of SDS, CTAB and triton X-100 were studied at pH 6.8 and 29°C using absorption spectrophotometry. By using pseudo-phase model, the partition coefficient between the bulk water and micelles, Kx, was calculated. The results showed that the micelles of CTAB enhanced the solubility of Procaine higher than SDS micelles (Kx = 96 and 166 for SDS and CTAB micelles, respectively) but triton X-100 did not enhanced the solubility of drug because of weak interaction with Procaine. From the resulting binding constant for Procaine-ionic surfactants interactions (Kb = 175 and 128 for SDS and CTAB surfactants, respectively), it was concluded that both electrostatic and hydrophobic interactions affect the interaction of surfactants with cationic procaine. Electrostatic interactions have a great role in the binding and consequently distribution of Procaine in micelle/water phases. These interactions for anionic surfactant (SDS) are higher than for cationic surfactant (CTAB). Gibbs free energy of binding and distribution of procaine between the bulk water and studied surfactant micelles were calculated.   相似文献   

17.
A sequential method is proposed for the determination of tryptophane and histidine by adsorptive cathodic stripping voltammetry using standard addition and H-point standard addition method (HPSAM). The complexes of copper(II) with the amino acids were accumulated onto the surface of a hanging mercury drop electrode for 60 s. Then the preconcentrated complexes were reduced by square wave voltammetry and the peak currents were measured. The effect of various parameters such as pH, concentration of copper, accumulation potential, accumulation time and scan rate on the sensitivity were studied by one-at-a time and artificial neural network. Under the optimized conditions, the peak currents at about +0.05 to −0.30 V is proportional to the concentration of tryptophan and histidine over the concentration ranges of 5–220 and 100–1200 nM, respectively. Optimization of the parameters by one-at-a time showed that at accumulation potential of 0.10 V (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of tryptophan and histidine does not have any contribution to the current. The optimization results by artificial neural network showed that at accumulation potential of −0.06 V (versus Ag/AgCl) the peak current is proportional to the both concentrations of tryptophan and histidine. Therefore, the method of H-point standard addition has been used for resolving overlap voltamograms for determination of histidine in the present of tryptophane. The method was successfully applied to the determination of tryptophan and histidine in synthetic and real samples.  相似文献   

18.
Two spectrophotometric methods are described for the simultaneous determination of binary mixtures of carbidopa and levodopa in pharmaceutical formulations, without prior separation steps, using the mean centering of ratio spectra and H-point standard addition methods (HPSAM). The methods are based on the difference in the absorption spectra for the products of the reaction of carbidopa and levodopa with 4-aminobenzoic acid in the presence of periodate ion at pH 4.0. The methods allow rapid and accurate determination of carbidopa and levodopa. The results showed that the methods were capable to simultaneous determination of 0.30-10.00 microg ml(-1) and 0.50-10.00 microg ml(-1) each of carbidopa and levodopa. The proposed methods were successfully applied to the simultaneous determination of carbidopa and levodopa in pharmaceutical samples.  相似文献   

19.
A simple, sensitive and selective spectrophotometric method for simultaneous determination of tretinoin and minoxidil using partial least square (PLS) calibration and H-point standard addition method (HPSAM) is described. The results of the H-point standard addition method show that minoxidil and tretinoin can be determined simultaneously with the concentration ratio of tretinoin to minoxidil varying from 2: 1 to 1: 33 in mixed samples. A partial least squares multivariate calibration method for the analysis of binary mixtures of tretinoin and minoxidil was also developed. The total relative standard error for applying the PLS method to eleven synthetic samples in the concentration range of 0–10 μg mL−1 tretinoin and 0–32 μg mL−1 minoxidil was 2.59 %. Both proposed methods (PLS and HPSAM) were also successfully applied in the determination of tretinoin and minoxidil in several synthetic pharmaceutical solutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号