首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
负载型TiO2-聚酰亚胺亲水复合膜的制备与分离性能   总被引:4,自引:1,他引:4  
王建伟  钟顺和 《催化学报》1997,18(4):306-309
采用溶解-流涎法,湿相转换法和干湿相转换法制轩了负载型TiO2-聚酰亚胺亲水复合膜,采用扫描电镜,红外光谱,压汞和透气性实验等手段对该膜的孔径分布,表面结构及扩散性能进行了表征,并讨论了制备亲水对膜孔结构的影响,实验结果表明,三种膜均具有很好的亲水性能,而干湿相转换膜具有良好的孔径分布和分离性能。  相似文献   

2.
Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s− 1. Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.  相似文献   

3.
This article discusses problems of validating classification models especially in datasets where sample sizes are small and the number of variables is large. It describes the use of percentage correctly classified (%CC) as an indicator for success of a classification model. For small datasets, %CC should not be used uncritically and its interpretation depends on sample size. It illustrates the use of a common classification method, discriminant partial least squares (D-PLS) on a randomly generated dataset of 200 samples and 200 variables.

An aim of the classifier is to determine whether the null hypothesis (there is no distinction between two classes) can be rejected. Autoprediction gives an 84.5% CC. It is shown that, if there is variable selection, it must be performed independently on the training set to obtain a CC close to 50% on the test set; otherwise, over-optimistic and false conclusions can be reached about the ability to classify samples into groups.

Finally, two aims of determining the quality of a model are frequently confused, namely optimisation (often used to determine the most appropriate number of components in a model) and independent validation; to overcome this, the data should be split into three groups.

There are often difficulties with model building if validation and optimisation have been done on different groups of samples, especially using iterative methods, each group being modelled using properties, such as a different number of components or different variables.  相似文献   


4.
Ren K  Kao P  Pisani MB  Tadigadapa S 《The Analyst》2011,136(14):2904-2911
In this paper, we present a micromachined Y-cut quartz resonator based thermal sensor array which is configured with a reaction chamber that is physically separated but located in close proximity to the resonator for sensitive calorimetric biosensing applications. The coupling of heat from the reaction chamber to the quartz resonator is achieved via radiation and conduction through ambient gas. The sensor was packaged onto a 300 μm thick stainless plate with an opening in the middle. The sensor array was aligned to the opening and mounted from the underside of the plate. A reaction chamber designed for performing (bio)chemical reactions was used in the measurements. This configuration of the sensor allows for a very robust sensing platform with no fouling of the sensor surface or degradation in its performance metrics. Impedance-based tracking of resonance frequency was used for chemical, enzymatic, and cellular activity measurements. The sensor described has an impedance sensitivity of 852 Ω °C(-1) or a frequency sensitivity of 7.32 kHz °C(-1) for the 91 MHz resonator used in this work. Results on exothermic reaction between hydrochloric acid and ammonium hydroxide, the hydrolysis reaction of urea by urease and the catalytic reaction of glucose with glucose dehydrogenase are reported. From the signal to noise ratio analysis of the glucose sensor, <10 μM glucose sensitivity could be obtained improving the detection limit by a factor of 250 in comparison to our previous work using thermopile sensors. Finally, calcium ionophore induced cellular activity was measured in pancreatic cancer cells using the sensor.  相似文献   

5.
《Electroanalysis》2018,30(8):1610-1615
Nitric oxide (NO) levels in exhaled breath are a non‐invasive marker that can be used to diagnose various respiratory diseases and monitor a patient's response to given therapies. A portable and inexpensive device that can enable selective NO concentration measurements in exhaled breath samples is needed. Herein, the performance of an amperometric Pt‐Nafion‐based gas phase sensor for detection of NO in exhaled human nasal breath is examined. Enhanced selectivity over carbon monoxide and ammonia is achieved via an in‐line zinc oxide‐based filter. Exhaled nasal NO levels measured in 21 human samples with the sensor are shown to correlate well with those obtained using a chemiluminescence reference method (R2=0.9836).  相似文献   

6.
无酶葡萄糖检测的研究进展   总被引:1,自引:1,他引:0  
本文主要介绍了各种无酶葡萄糖的检测方法。 相对于酶法,该方法克服了由于酶本身固有的属性而导致的在固定化过程中不稳定易失活的缺点,具有较好的重现性、稳定性以及抗干扰能力。  相似文献   

7.
In this paper, it is demonstrated that a single-receptor biosensor can be used to quantitatively determine each analyte in binary mixtures using multivariate data analysis tools based on the dynamic responses received from flow injection peaks. Mixtures with different concentrations of two phenolic compounds, catechol and 4-chlorophenol, were measured with a graphite electrode modified with tyrosinase enzyme at an applied potential of −50 mV versus Ag/AgCl. A correction algorithm based on measurements of references in-between samples was applied to compensate for biosensor ageing as well as differences caused by deviations between biosensor preparations. After correction, the relative prediction errors with partial least squares regression (PLS-R) for catechol and 4-chlorophenol were 7.4 and 5.5%, respectively, using an analysis sequence measured on one biosensor. Additional validation mixtures of the two phenols were measured with a new biosensor, prepared with the same procedure but with a different batch of tyrosinase enzyme. Using the mixture responses for the first sensor as a calibration set in PLS-R, the relative prediction errors of the validation mixtures, after applying correction procedures, were 7.0% for catechol and 16.0% for 4-chlorophenol. These preliminary results indicate that by applying correction algorithms it could be possible to use less stable biosensors in continuous on-line measurements together with multivariate data analysis without time-consuming calibration procedures.  相似文献   

8.
We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O2-responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance.  相似文献   

9.
A paper-based potentiometric sensor was constructed and characterized for the detection of glucose in saliva. Dilution of the samples was optimized to afford the optimum experimental conditions of measurements. The performance allows for detecting abnormal high glucose concentrations observed in diabetes patients. Repeatability data were presented and the performance of the sensor compared to literature examples showing suitable characteristics at a much lower cost. The validation in real saliva samples was performed against a commercial colorimetric kit showing that glucose could be effectively determined in the 4–10 mM range based on the comparison with a reference method.  相似文献   

10.
The surface stress induced during the formation of alkanethiol self-assembled monolayers (SAMs) on gold from the vapor phase was measured using a micromechanical cantilever-based chemical sensor. Simultaneous in situ thickness measurements were carried out using ellipsometry. Ex situ scanning tunneling microscopy was performed in air to ascertain the final monolayer structure. The evolution of the surface stress induced during coverage-dependent structural phase transitions reveals features not apparent in average ellipsometric thickness measurements. These results show that both the kinetics of SAM formation and the resulting SAM structure are strongly influenced both by the surface structure of the underlying gold substrate and by the impingement rate of the alkanethiol onto the gold surface. In particular, the adsorption onto gold surfaces having large, flat grains produces high-quality self-assembled monolayers. An induced compressive surface stress of 15.9 +/- 0.6 N/m results when a c(4x2) dodecanethiol SAM forms on gold. However, the SAMs formed on small-grained gold are incomplete and an induced surface stress of only 0.51 +/- 0.02 N/m results. The progression to a fully formed SAM whose alkyl chains adopt a vertical (standing-up) orientation is clearly inhibited in the case of a small-grained gold substrate and is promoted in the case of a large-grained gold substrate.  相似文献   

11.
压电晶体传感器阵列测定装置及数据采集系统   总被引:1,自引:0,他引:1  
潘卫  邢婉丽 《分析化学》1997,25(9):1104-1108
研究了一种利用微机控制测量和采集压电晶体传感器阵列振荡频率的智能型仪器。介绍了其硬件及数据采集软件的功能,结构等。  相似文献   

12.
Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.  相似文献   

13.
14.
Frequency dependent dielectric measurements have been used to monitor and characterize the phase separation process and changes in state of each phase. The measurements are made in situ using a micro planar sensor. They can be made both in the laboratory as well as in an industrial production or use environment. Two examples are presented. The first is monitoring the onset of phase separation, the buildup in Tg and change in composition of each phase during “reactive processing” of a high performance thermoplastic (TP) PPI, thermoset precursors (TS) DGEBA-MCDEA intially homogeneous blend. The second example involves monitoring the stability, onset of phase separation, as a function of temperature on a mineral oil, stearyl alcohol, water, sufactant emulsion used in the cosmetic industry.  相似文献   

15.
The spectral fingerprinting of the excitation emission matrix (EEM) of fluorescent substances is demonstrated using polychromatic light sources and tri-chromatic image detectors. A model of the measured fingerprints explaining their features and classification performance, based on the polychromatic excitation of the indicators is proposed.Substantial amount of spectral information is retained in the fingerprints as corroborated by multivariate analysis and experimental conditions that favor such situation are identified.In average, for five different substances, the model shows a fitting goodness measured by the Pearson's r coefficient and the root mean square deviation of 0.8541 and 0.0247 respectively, while principal component classification patterns satisfactorily compare with the EEM spectroscopy classification and respectively explain 96% and 93% of the information in the fist two principal components.The measurements can be performed using regular computer screens as illumination and web cameras as detectors, which constitute ubiquitous and affordable platforms compatible with distributed evaluations, in contrast to regular instrumentation for EEM measurements.  相似文献   

16.
In this work, the base-catalyzed transesterification of soybean oil with ethanol was monitored on-line using mid-infrared spectroscopy (MIRS) and the yield of fatty acid ethyl esters (biodiesel) was obtained by (1)H NMR spectroscopy. The MIRS monitoring carried out for 12min, was performed using a cylindrical internal reflectance cell of PbSe in the range of 3707-814cm(-1) with eight co-added scans. Two different data treatment strategies were used: in the first, the models were built using the raw data and in the other, evolving factor analysis (EFA) was used to overcome the sensor time delay due to the on-line analysis, producing significantly better results. In addition, models based on partial least squares (PLS) using three batches for calibration and another for validation were compared with models with just one batch for calibration and three for validation. The models were compared between each other using root mean square error of prediction (RMSEP) and root mean square prediction difference (RMSPD), obtaining relative errors under 3%.  相似文献   

17.
《Sensors and Actuators》1988,13(1):29-41
The fundamental function of a measuring system is discussed, and the importance of achieving selectivity for the quantity to be measured is pointed out.Next, three main methods of realizing this selectivity in sensor technology are described, and it is pointed out that cooperation and task sharing between them are necessary to simplify the hardware construction of a superior sensor.Finally, the spatial filtering method is considered as an example of such task sharing. The concept of spatial filtering and the basic structure of a spatial filter detector are explained, and applications to linear speed measurement, two-dimensional velocity measurement and macro-measurement of random movement are presented.  相似文献   

18.
Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.  相似文献   

19.
This paper presents two methodologies for monitoring the service condition of diesel-engine lubricating oils on the basis of infrared spectra. In the first approach, oils samples are discriminated into three groups, each one associated to a given wear stage. An algorithm is proposed to select spectral variables with good discriminant power and small collinearity for the purpose of discriminant analysis classification. As a result, a classification accuracy of 93% was obtained both in the middle (MIR) and near-infrared (NIR) ranges. The second approach employs multivariate calibration methods to predict the viscosity of the lubricant. In this case, the use of absorbance measurements in the NIR spectral range was not successful, because of experimental difficulties associated to the presence of particulate matter. Such a problem was circumvented by the use of attenuated total reflectance (ATR) measurements in the MIR spectral range, in which an RMSEP of 3.8 cSt and a relative average error of 3.2% were attained.  相似文献   

20.
Generally, bioanalytical chromatographic methods are validated according to a predefined programme and distinguish a pre-validation phase, a main validation phase and a follow-up validation phase. In this paper, a rational, total performance evaluation programme for chromatographic methods is presented. The design was developed in particular for the pre-validation and main validation phases. The entire experimental design can be performed within six analytical runs. The first run (pre-validation phase) is used to assess the validity of the expected concentration-response relationship (lack of fit, goodness of fit), to assess the specificity of the method and to assess the stability of processed samples in the autosampler for 30 h (benchtop stability). The latter experiment is performed to justify overnight analyses. Following approval of the method after the pre-validation phase, the next five runs (main validation phase) are performed to evaluate method precision and accuracy, recovery, freezing and thawing stability and over-curve control /dilution. The design is nested, i.e., many experimental results are used for the evaluation of several performance characteristics. Analysis of variance (ANOVA) is used for the evaluation of lack of fit and goodness of fit, precision and accuracy, freezing and thawing stability and over-curve control/ dilution. Regression analysis is used to evaluate benchtop stability. For over-curve control/ dilution, additional to ANOVA, also a paired comparison is applied. As a consequence, the recommended design combines the performance of as few independent validation experiments as possible with modern statistical methods, resulting in optimum use of information. A demonstration of the entire validation programme is given for an HPLC method for the determination of total captopril in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号