首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel flow chemiluminescence (CL) system for determination of pipemidic acid was proposed, which was based on the sensitizing effect of pipemidic acid on the CL oxidation of sulfite by KMnO4 in acid media. Combined with the technique of ultrafiltration, the flow-injection CL system was applied to study in vitro the bovine serum album (BSA) binding of pipemidic acid. The estimated association constant (K) and the number of the binding site (n) on one molecule of BSA were 8.81×104 l/mol and 0.94, respectively. The method provided a fast and simple technique for the study of drug-protein interaction.  相似文献   

2.
A pyrimethanil-imprinted polymer (P1) was prepared by iniferter-mediated photografting a mixture of methacrylic acid and ethylene dimethacrylate onto homemade near-monodispersed chloromethylated polydivinylbenzene beads. The chromatographic behaviour of a column packed with these imprinted beads was compared with another column packed with irregular particles obtained by grinding a bulk pyrimethanil-imprinted polymer (P2). The comparison was made using the kinetic model of non-linear chromatography, studying the elution of the template and of two related substances, cyprodinil and mepanipyrim. Extension of the region of linearity, capacity factors for the template and the related substances, column selectivity, binding site heterogeneity, apparent affinity constant (K) and lumped kinetic association (ka) and dissociation rate constant (kd) were studied during a large interval of solute concentration, ranging between 1 and 2000 μg/ml. From the experimental results obtained, in the linearity region of solute concentration column selectivity and binding site heterogeneity remained essentially the same for the two columns, while column capacity (at 20 μg/ml, P1 = 23.1, P2 = 11.5), K (at 20 μg/ml, P1 = 8.3 × 106 M−1, P2 = 2.5 × 106 M−1) and ka (at 20 μg/ml, P1 = 3.5 μM−1 s−1, P2 = 0.47 μM−1 s−1) significantly increased and kd (at 20 μg/ml, P1 = 0.42 s−1, P2 = 0.67 s−1) decreased for the column packed with the imprinted beads. These results are consistent with an influence of the polymerisation method on the morphology of the resulting polymer and not on the molecular recognition properties due to the molecular imprinting process.  相似文献   

3.
Al-Arfaj NA 《Talanta》2004,62(2):255-263
A flow-injection (FI) methodology using (2,2′-dipyridyl) ruthenium(II) [Ru(dipy)32+] chemiluminescence (CL) was developed for the rapid and sensitive determination of metoclopramide hydrochloride. The method is based on the CL reaction of metoclopramide with Ru(dipy)32+ and KMnO4 in a sulfuric acid medium. Under the optimum conditions, a calibration graph was obtained over the concentration range 0.005-3.5 μg ml−1 with a limit of detection (S/N=2) of 1 ng ml−1. The correlation coefficient was 0.99993 (n=8) with a relative standard deviation of 0.48% for 10 determinations of 1 μg ml−1 of drug. The method was successfully applied to the determination of metoclopramide in pharmaceutical preparations and biological fluids after IP administration of 25 mg kg−1 dose to rats. The elimination half-life was 2.5±0.4 h.  相似文献   

4.
 A novel flow injection chemiluminescence (CL) system for the determinati on of pipemidic acid is described. It is based on the direct CL reaction of pipemidic acid and Co(III) in acid medium. The unstable Co(III) was on-line electrogenerated by constant current electrolysis. The CL intensity was linear with pipemidic acid concentration in the range of 0.01∼100 μg/ml, the determination limit was 3.3×10−9 g/mL. The whole process could be complete d in 1 min with a relative standard deviation of 3.2%. The proposed method is suitable for automatic and continuous analysis and has been applied successfully to the analysis of pipemidic acid in a pharmaceutical preparation. Received November 22, 1999. Revision March 24, 2000.  相似文献   

5.
A procedure for determining germanium in soil samples using electrothermal atomic absorption spectrometry is discussed. The analyte is leached from the solid sample by the addition of 1 ml of concentrated hydrofluoric acid to 10-300 mg of sample, and the mixture is then submitted to a 10 min ultrasonic treatment. After adding 0.4 g boric acid and 3 ml concentrated hydrochloric acid, germanium is extracted into 1 ml chloroform and back-extracted into an aqueous phase containing (0.05%, w/v) nickel nitrate. Ten micro liter of aqueous phase are introduced into the atomizer and the analytical signal from germanium is obtained using a fast-heating cycle. The detection limit, calculated using three times the standard error of estimate (sy/x) of the calibration graph, is 0.015 μg g−1. The reliability of the procedure is verified by analyzing several certified reference materials.  相似文献   

6.
A fast, economic and sensitive chemiluminescence (CL) method has been developed for the analysis of cetrizine hydrochloride (CET) in pharmaceutical formulations and in biological fluids. The CL method is based on the oxidation of tris(2,2′-bipyridyl)ruthenium(II) (Ru (bipy)32+) by peroxydisulphate in a two-chip device. Up to 180 samples can be analysed per hour, consuming only minute quantities of reagents. Three instrumental setups were tested to find the most economical, sensitive and high throughput setup. In the first setup, a continuous flow of sample and CL reagents was used, whereas in the second setup, a fixed volume (2 μL) of (Ru (bipy)32+) was introduced into a continuous infusion of peroxydisulphate and the sample. In the third design, a fixed volume of sample (2 μL) was injected while the CL reagents were continuously infused. Compared to the first setup, a 200% signal enhancement was observed in the third setup. Various parameters that influence the CL signal intensity, including pH, flow rates and reagent concentrations, were optimized. A linear response was observed over the range of 50 μg L−1 to 6400 μg L−1 (R2 = 0.9959) with RSD values of 1.1% (n = 15) for 1000 μg L−1. The detection limit was found to be 15 μg L−1 (S/N = 3). The amount of consumed sample was only 2 μL, from which the detected amount of CET was found to be 6.5 × 10−14 mol. This procedure was successfully applied to the analysis of CET in pharmaceutical formulations and biological fluids.  相似文献   

7.
A flow-injection chemiluminescence (CL) method for the determination of pipemidic acid is described. It is based on energy transfer from excited state peroxynitrous acid to pipemidic acid, in which the excited state peroxynitrous acid is synthesized on-line by the mixing of acid hydrogen peroxide with nitrite in a flow system and the CL is from two excited states of pipemidic acid. The proposed method allows the measurement of pipemidic acid over the range of 2.0×10–7–2.0×10–5 mol l–1 . The detection limit is 6.3×10–8 mol l–1, and the relative standard deviation for 2.0×10–6 mol l–1 pipemidic acid (n= 9) is 0.9%. This method was evaluated by the analysis of pipemidic acid in pharmaceutical preparations.  相似文献   

8.
Pan X  Tian K  Jones LE  Cobb GP 《Talanta》2006,70(2):455-459
A simple, sensitive LC-ESI-MS method was optimized for quantitative analysis of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in environmental samples. Under negative ionization mode, HMX can form adduct ions with various organic acids and salts, including acetic acid, formic acid, propionic acid, ammonium nitrate, ammonium chloride, sodium nitrite, and sodium nitrate. Acetic acid was chosen as additive and the ion, [M + CH3COO] with m/z = 355 was used for selective ion monitoring (SIM) in this study. Good sensitivity was achieved with low acetic acid concentration in the mobile phase and relatively low capillary temperature. The method detection limit was 0.78 pg for HMX in standard solution. Linearity (R2 > 0.9998) was obtained at low concentrations (0.5-50 μg/L). This method has been used to determine HMX concentrations in water samples and lizard egg samples from an animal exposure study.  相似文献   

9.
Indirect detection of paracetamol was accomplished using a capillary electrophoresis-chemiluminescence (CE-CL) detection system, which was based on its inhibitory effect on a luminol-potassium hexacyanoferrate(III) (K3[Fe(CN)6]) CL reaction. Paracetamol migrated in the separation capillary, where it mixed with luminol included in the running buffer. The separation capillary outlet was inserted into the reaction capillary to reach the detection window. A four-way plexiglass joint held the separation capillary and the reaction capillary in place. K3[Fe(CN)6] solution was siphoned into a tee and flowed down to the detection window. CL was observed at the tip of the separation capillary outlet. The CL reaction of K3[Fe(CN)6] oxidized luminol was employed to provide the high and constant background. Since paracetamol inhibits the CL reaction, an inverted paracetamol peak can be detected, and the degree of CL suppression is proportional to the paracetamol concentration. Maximum CL signal was observed with an electrophoretic buffer of 30 mM sodium borate (pH 9.4) containing 0.5 mM luminol and an oxidizer solution of 0.8 mM K3[Fe(CN)6] in 100 mM NaOH solution. Under the optimal conditions, a linear range from 6.6 × 10−10 to 6.6 × 10−8 M (r = 0.9999), and a detection limit of 5.6 × 10−10 M (signal-to-noise ratio = 3) for paracetamol were achieved. The relative standard deviation (R.S.D.) of the peak area for 5.0 × 10−9 M of paracetamol (n = 11) was 2.9%. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.  相似文献   

10.
A rapid and simple method using capillary electrophoresis (CE) with chemiluminescence (CL) detection was developed for the determination of levodopa. This method was based on enhance effect of levodopa on the CL reaction between luminol and potassium hexacyanoferrate(III) (K3[Fe(CN)6]) in alkaline aqueous solution. CL detection employed a lab-built reaction flow cell and a photon counter. The optimized conditions for the CL detection were 1.0 × 10−5 M luminol added to the CE running buffer and 5.0 × 10−5 M K3[Fe(CN)6] in 0.6 M NaOH solution introduced postcolumn. Under the optimal conditions, a linear range from 5.0 × 10−8 to 2.5 × 10−6 M (r = 9991), and a detection limit of 2.0 × 10−8 M (signal/noise = 3) for levodopa were achieved. The precision (R.S.D.) on peak area (at 5.0 × 10−7 M of levodopa, n = 11) was 4.1%. The applicability of the method for the analysis of pharmaceutical and human plasma samples was examined.  相似文献   

11.
A new, simple and sensitive spectrofluorimetric method for the determination of salicylic acid (λex = 315 nm, λem = 408 nm) using As(III) as a sensitizing reagent has been investigated by measuring the increase of fluorescence intensity of salicylic acid due to the complexation of As(III)-salicylic acid in presence of sodium dodecyl sulfate (SDS) 10−3 M. Under optimum conditions, a significant relationship was obtained between the fluorescence intensity and salicylic acid concentration. A linear calibration curve was obtained in the range 13.8-13812 μg l−1 with product-moment correlation coefficient (R) 0.99985 and detection limit 4.2 μg l−1. The R.S.D. is 2.35% (n = 5).The method was applied successfully to the determination of salicylic acid in human serum.  相似文献   

12.
In this work, a new, simple and sensitive flow injection catalytic kinetic spectrophotometric determination of nitrite is reported based on catalytic effect of nitrite on the redox reaction between sulfonazo III and potassium bromate in acidic media. The reaction was monitored by measuring the decrease in the absorbance of sulfunazo III at 570 nm. Various chemical (such as the effect of acidity, reagents concentrations) and instrumental parameters (flow rate, reaction coil length, injection volume and temperature) were studied and were optimized. Under the optimum conditions calibration graph was linear in the nitrite concentration ranges of 8.00 × 10−3-3.00 × 10−1 μg/ml (with slope of 2.40) and 3.50 × 10−1-1.80 μg/ml (with slope of 0.42). The detection limit was 6.00 × 10−3 μg/ml of nitrite, the relative standard deviation (n = 10) was 1.25% and 0.88% for 5.00 × 10−2 and 2.00 × 10−1 μg/ml of nitrite respectively. About 60 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of nitrite in food and environmental samples.  相似文献   

13.
In the present work, the separations of calixarene derivatives have been investigated using both high-performance liquid chromatography (HPLC) and nonaqueous capillary electrophoresis (NACE) techniques. HPLC-1 method with LC-318 (pore size = 300 Å) column and MeCN mobile phase was optimized for the separation of calixarenes. At the flow-rate of 1 ml/min p-nitrocalix[6]arene, calix[4]arene and calix[6]arene could be well baseline and symmetrically separated within 5 min. For the separation of p-tert-butylcalix[n]arenes (n = 4, 6, 8), HPLC-2 and NACE methods have been optimized. The optimal conditions in HPLC-2 method included NH2 column and MeCN mobile phase, and p-tert-butylcalix[n]arenes (n = 4, 6, 8) were baseline separated within 10 min at 0.8 min/min. The optimal conditions for NACE method employed MeCN-H2O (8:2, v/v) as the nonaqueous medium and 120 mM Tris/HCl (pH 9.0) as the buffer, and p-tert-butylcalix[n]arenes (n = 4, 6, 8) were successfully baseline resolved within 16 min. With the detection at 280 nm, the calibration lines were linear in the ranges of 1-200 μg/ml for calixarene derivatives by HPLC-1 and HPLC-2 methods, and of 2.5-200 μg/ml for p-tert-butylcalix[n]arenes (n = 4, 6, 8) by NACE method, respectively. The detection limits (S/N = 3) and recoveries ranged from 0.5 to 1.4 μg/ml and from 98.1 to 102.4% by both HPLC-1 and HPLC-2 methods, and from 1.3 to 2.0 μg/ml and from 97.9 to 105.1% by NACE method, respectively. The intra-day reproducibility of the methods was determined with satisfactory results. The proposed HPLC and NACE methods were accurate and reproducible, and could be utilized to separate and determine calixarene derivatives.  相似文献   

14.
In this work, chemiluminescence (CL) behaviors of two selected phenothiazines, namely promazine and fluphenazine hydrochloride, were investigated for their simultaneous determination using oxidation of Ru(bipy)32+ by Ce4+ ions in acidic media. This method is based on the kinetic distinction of the CL reactions of fluphenazine and promazine with Ru(bipy)32+ and Ce4+ system in a sulfuric acid medium. Least square support vector regression models were constructed for relating concentrations of both compounds to their CL profiles. The parameters of the model consisting of σ2 and γ were optimized using all possible combinations of σ2 and γ to select the model with the minimum root mean square cross validation. Under optimized conditions, the univariate calibration curve was linear over the concentration ranges of 0.4-30.0 μg mL−1 and 0.07-5.0 μg mL−1 with detection limits of 0.1 μg mL−1 and 0.04 μg mL−1 for promazine and fluphenazine, respectively. The influence of potential interfering substances on the determination of promazine and fluphenazine were studied. The proposed method was used for simultaneous determination of both compounds in synthetic mixtures and in spiked human plasma.  相似文献   

15.
Zhang Y  Zhang Z  Qi G  Sun Y  Wei Y  Ma H 《Analytica chimica acta》2007,582(2):229-234
The determination of indomethacin (INM) in pharmaceutical and biological samples by means of high-performance liquid chromatography (HPLC) with in situ electrogenerated Mn(III) chemiluminescence (CL) detection was proposed. The method was based on the direct CL reaction of INM and Mn(III), which was in situ electrogenerated by constant current electrolysis. The chromatographic separation was carried out on Nucleosil RP-C18 column (250 mm × 4.6 mm; i.d., 5 μm; pore size, 100 Å) at 20 °C. The mobile phase consisted of methanol:water:acetic acid = 67:33:0.1 solution. At a flow rate of 1.0 mL min−1, the total run time was 10 min. The effects of several parameters on the HPLC resolution and CL emission were studied systematically. Under the optimal conditions, a linear range from 0.01 to 10 μg mL−1(R2 = 0.9991), and a detection limit of 8 ng mL−1 (signal-to-noise ratio = 3) for INM were achieved. The relative standard deviations (R.S.D.) for 0.1 μg mL−1 INM were 2.2% within a day (n = 11) and 3.0% on 5 consecutive days (n = 6), respectively. The recovery of INM from urine samples was more than 92%. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.  相似文献   

16.
The method for simultaneous separation and determination of trace monoadenosine and diadenosine monophosphate (i.e. 2′-AMP, 3′-AMP, 5′-AMP and 3′-5′ ApA) in biomimicking prebiotic synthesis was developed using high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection and electrospray ionization mass spectrometry (ESI-MS) identification. The separation was performed on a Supelco C18 column with a gradient elution (solvent A: 10 mM NH4Ac aqueous solution; solvent B: MeOH). The flow rate was set at 1.0 ml/min. The quantitative determination was achieved by HPLC with UV detection at 260 nm. The linearity ranged from 0.5 to 100 μg/ml for each nucleotide. The limits of detection (LODs) for the four nucleotides were less than 0.30 μg/ml. The recovery ranged from 95.2 to 100.7%. The intra-day relative standard deviations (RSDs) of the retention times were between 0.7 and 1.1%. Both full-scan ESI-MS and -MS2 for the four nucleotides under both positive and negative polarity were carried out and the possible cleavage pathways of them were depicted. The specific ions, [AMP + H]+ at m/z 348 and [ApA + H]+ at m/z 597, were chosen to characterize the four nucleotides in biomimicking prebiotic synthesis between N-(O,O-diisopropyl) phosphoryl amino acid (Dipp-aa) and adenosine. Using the proposed HPLC/UV/ESI-MS method, the concentration of 2′-AMP, 3′-AMP, 5′-AMP and 3′-5′ ApA in the biomimicking prebiotic synthesis samples were determined.  相似文献   

17.
Du J  Hao L  Li Y  Lu J 《Analytica chimica acta》2007,582(1):98-102
A simple flow injection chemiluminescence (FI-CL) method was proposed for the determination of nitrofurazone. Strong CL signal was generated during the reaction of nitrofurazone with H2O2 and N-bromosuccinimide (NBS) in alkaline condition. The CL signal was proportional to the nitrofurazone concentration in the range 1.0 × 10−7 to 1.0 × 10−5 g mL−1. The detection limit was 2 × 10−8 g mL−1 nitrofurazone and the relative standard deviation was less than 4% (6.0 × 10−6 g mL−1 nitrofurazone, n = 11). The proposed method was successfully applied to the determination of nitrofurazone in compound furacillin nasal drops, human plasma and urine samples. The CL reaction mechanism was also discussed briefly. Singlet oxygen generated in the reaction between H2O2 and NBS was suggested to be participated in the CL reaction.  相似文献   

18.
Chao Lu  Jinge Li  Jin-Ming Lin 《Talanta》2010,82(4):1576-9063
Peroxymonocarbonate (HCO4) was produced by the online reaction of bicarbonate with hydrogen peroxide. A strong chemiluminescence (CL) was observed when HCO4 reacted with AuCl4 without any special CL reagent. When bisphenol A (BPA) was added to AuCl4-HCO4 CL system, the CL emission was inhibited significantly. This new CL system was developed as a flow-injection method for the determination of BPA. Under the optimum experimental conditions, the inhibited CL intensity was linearly related to the concentration of BPA from 0.3 to 80 μM (R = 0.9958). The detection limit of BPA was 0.08 μM. The relative standard deviation for 12 repeated measurements of 1.0 μM BPA was 2.9%. The interferences of some cationic ions can be removed by an online cation-exchange column. The applicability of the present CL system was demonstrated for the sensitive and selective determination of BPA in real samples (mineral water bottle, baby bottle, beverage bottle and polycarbonate container). Based on the CL spectrum, UV-visible adsorption spectra, and the quenching effect of reactive oxygen species scavengers, a possible CL mechanism was proposed.  相似文献   

19.
Fluorescence and terbium-sensitised luminescence properties of new quinolone garenoxacin have been studied. The fluorimetric method allows the determination of 0.060-0.600 μg ml−1 of garenoxacin in aqueous solution containing HCl/KCl buffer (pH 1.5) with λexc=282 nm and λem=421 nm. Micellar-enhanced fluorescence was also studied, leading to a higher than 400% increase in analytical signal in presence of 12 mM sodium dodecyl sulphate (SDS), allowing the determination of 0.020-0.750 μg ml−1 of garenoxacin. The terbium-sensitised luminescence method allows the determination of 0.100-1.500 μg ml−1 of garenoxacin in 12 mM SDS solution containing 0.08 M acetic acid/sodium acetate buffer (pH 4.1) and 7.5 mM Na2SO3 (chemical deoxygenation agent), with λexc=281 nm and λem=546 nm. Relative standard deviation (R.S.D.) values for the three methods were in the range 1.0-2.0%. The proposed procedures have been applied to the determination of garenoxacin in spiked human urine and serum.  相似文献   

20.
Three platinum group elements (Pd, Ir and Rh) both in solution and in pre-reduced form, and also combined with Mg(NO3)2 or ascorbic acid, were assessed as possible chemical modifiers on the atomization of As in digest solutions of seafood matrices (clam and fish tissue) by tungsten coil electrothermal atomic absorption spectrometry (TCA-AAS) and compared without a modifier. Of 28 modifier alternatives in study including single form and binary mixtures, and based on maximum pyrolysis temperature without significant As loss and best As absorbance sensitivity during atomization, three modifiers: Rh (0.5 μg), Ir (1.0 μg) and Rh (0.5 μg) + ascorbic acid (0.5 μg), at optimum amounts were pre-selected and compared. The definitive modifier (rhodium (0.5 μg)) was selected by variance analysis. The mean within-day repeatability was 3% in consecutive measurements (25-300 μg l−1) (three cycles, each of n = 6) and showed good short-term stability of the absorbance measurements. The mean reproducibility was 4% (n = 18 in a 3-day period) and the detection limit (3σblank/slope) was 42 pg (n = 16). Quantitation was by standard additions to compensate for matrix effects not corrected by the modifier. Three sample digestion procedures were compared in fish and clam tissue samples: microwave acid digestion alone (A) or combined with the addition of 2% (m/v) K2S2O8 solution followed either by UV photo-oxidation (B) or re-digestion in a thermal block (C). The accuracy was established by determination of As in certified reference material of dogfish muscle (DORM-2). Procedures B and C showed good recoveries (102% (n = 4) and 103% (n = 7), respectively), whereas procedure A was not quantitative (85%). The methodology is simple, fast, reliable, of low cost and was applied to the determination of total As in lyophilized samples of clam and fish collected in the Chilean coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号