首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The work considers for the first time the preparation of sorbents based on hypercrosslinked polysterene (HCP) and chelating agent N,N,N′,N′-tetraoctyl diglycolamide (TODGA) by impregnation in the supercritical (SC) CO2 medium. Such sorbents can be applied for further isolation and separation of lanthanides, actinides and other metals. They are usually prepared by impregnation in toxic organic solvents (e.g., methanol, dichloromethane). Our study shows that application of SC CO2 instead of organic solvents can significantly speed up the impregnation, perfom it in one stage and make the process more eco-friendly. At the same time, the obtained sorbents are close in their parameters to the classical ones. This article presents the results of measuring the TODGA adsorption isotherms on two HCP sorbents (MN202 and MN270) on a wide range of SC fluid parameters. Adsorption measurements were carried out using on-line supercritical fluid chromatography and gravimetry. Based on the sorption capacity parameter, MN202 sorbent was selected as the better carrier for TODGA. An impregnation temperature increase within the range 313–343 K in isochoric conditions (ρ = 0.780 g/mL) reduces the maximum of TODGA adsorption from ~0.68 mmol/g to ~0.49 mmol/g.  相似文献   

2.
A range of vibrational spectroscopic techniques are used to monitor supercritical fluid extraction and impregnation of polymers. Impregnation processes of this type show potential as alternative apporaches to the synthesis of polymer based catalysts and new materials. Methods have been devised using conventional Fourier transform infrared spectroscopy for real time monitoring of the extraction and impregnation of polyethylene films using an organometallic complex, CpMn(CO)3 (Cp = η5 ? C5 H5) as a spectroscopic probe. Both low and high density powdered polyethylene may be impregnated using supercritical carbon dioxide. The resulting materials are analysed using FTIR photoacoustic spectroscopy, diffuse reflectance infrared spectroscopy and FT Raman spectroscopy to probe both the impregnated bulk of the polymer and surface-coated material. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Preparation of SiO2-TiO2 Aerogels Using Supercritical Impregnation   总被引:3,自引:0,他引:3  
The preparation of SiO2-TiO2 aerogels by supercritical impregnation of titanium alkoxides into silica alcogels was investigated. A mixture of CO2 and 2-propanol with dissolved titanium tetraisopropoxide modified with acetylacetone was used as the impregnation medium. Prior to the experiments, the supercritical behaviour of the impregnation solution was investigated. The microstructure and properties of aerogels prepared by the supercritical impregnation method were almost identical to those generated by the liquid impregnation. However, the time for impregnation was substantially decreased and the homogeneity of the impregnated titanium distribution on the aerogel increased.  相似文献   

4.
Using a grand canonical Monte Carlo simulation, we study argon adsorption in graphitic cylindrical pores to investigate the differences between the isosteric heat and the integral molar enthalpy under subcritical and supercritical conditions and compare these results against those for a flat graphite surface to investigate the role of confinement on the enthalpy change of adsorption. The isosteric heat curve is finite under subcritical conditions, but for supercritical adsorption, it becomes infinite at the pressure where the excess concentration versus pressure is maximum. This can be circumvented using the integral molar enthalpy, which is a better variable to describe the energy change for supercritical adsorption. Finally, the effects of pore geometry (radius and length) on argon adsorption under subcritical and supercritical conditions are discussed.  相似文献   

5.
Carbon-aerogel-supported ruthenium nanoparticles were synthesized by impregnating carbon aerogels with Ru(acac)3 or Ru(cod)(tmhd)2 from supercritical carbon dioxide (scCO2) solutions, followed by thermal reduction of these precursors. Two different carbon aerogels with pore diameters of 4 and 21 nm were synthesized. The kinetics and the thermodynamics of impregnation of carbon aerogels with the ruthenium coordination complexes were studied. The approach-to-equilibrium data indicated very fast adsorption, and the adsorption isotherms were found to follow the Langmuir model. The impregnated carbon aerogel complexes were reduced thermally at different temperatures between 300 and 1000 degrees C in the presence of nitrogen. The resulting nanocomposites were characterized using transmission electron microscopy (TEM) and hydrogen chemisorption. TEM micrographs showed that the ruthenium nanoparticles were dispersed homogeneously throughout the porous carbon aerogel matrix, and the average sizes obtained under different conditions ranged from 1.7 to 3.8 nm. Once complete decomposition of the precursor had been achieved, the mean size of the ruthenium particles increased with increasing reduction temperature.  相似文献   

6.
采用超临界CO2注入技术制备聚合物-无机纳米粒子复合材料,以乙醇作为共溶剂,在超临界CO2中将正硅酸乙酯(TEOS)注入到聚丙烯(PP)中,重点研究共溶剂乙醇对TEOS在PP中注入率的影响.实验结果表明注入率随着共溶剂加入先增加后减小.同时研究了在共溶剂的存在下其他实验条件对注入率的影响.并采用卢瑟福背散射能谱法(RBS)分析了聚丙烯/SiO2纳米复合材料的注入元素深度分布,发现Si元素在PP中的浓度分布不均匀,随着深度的增加而减小.  相似文献   

7.
In the present work the supercritical fluids argon, methane and nitrogen were picked out as examples, and the results of analysis concerning the adsorption of these fluids at activated carbon Norit R1 (Norit company, Germany) and SCS-3 (ISPE, Kiev) at different temperatures up to a pressure of 50 MPa are presented and discussed in this paper. The principle of working of the measuring device is described in this context as well.A three-parameter isothermal equation is used to represent the adsorption equilibrium. The isothermal equation is based on a physical model concept which has already been used for the modelling of adsorption processes with a pressure up to 15 MPa.  相似文献   

8.
The efficiency of treatment of paper prepared from 100% sulfite cellulose with basic agents (solutions of magnesium alkoxides or methoxycarbonate in alcohols or in supercritical carbon dioxide) to neutralize acid was studied, as influenced by the following factors: concentration of a basic agent in the neutralizing solutions, repetition of impregnation of paper with a neutralizing solution and hydrolysis of the neutralizing agent after each impregnation cycle, temperature and pressure of supercritical carbon dioxide, mixing of a neutralizing agent with supercritical CO2, and conditions (dynamic or static) the paper treatment with a neutralizing solution.Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 12, 2004, pp. 2042–2046.Original Russian Text Copyright © 2004 by Dobrodskaya, Egoyants, Ikonnikov, Romashenkova, Sirotin, Dobrusina, Podgornaya.  相似文献   

9.
The effect of the network density of spatially crosslinked polyacrylic transparent matrices and the conditions of their impregnation with a photochromic compound via the use of supercritical carbon dioxide on the concentration of the introduced photochromic compound of the spiroxazin family is studied. The concentration of impregnated filler in a matrix is shown to increase with increases in the interjunction distance (below a certain level) and network chain flexibility as well as with increases in the temperature and pressure of the impregnation process. Impregnation in rigid networks occurs only in surface layers, whereas, in an elastic network, impregnation occurs in the entire volume of a sample. Matrices based on oligourethanemethacrylates are characterized by a good thermodynamic affinity toward spiroxazin photochromic compounds, a fact that makes it possible to increase the concentration of photochromic compounds in the matrix up to 3 wt % under conditions of supercritical impregnation. The photochromic characteristics of an impregnated compound are shown to be preserved in samples.  相似文献   

10.
许峥  张继炎等 《分子催化》2001,15(5):346-350
采用溶胶-凝胶法和超临界干燥技术,制备了气凝胶超细氧化铝载体、超细二元(NiO-Al2O3)和三元(NiO-La2O3-Al2O3)催化剂,同时以超细氧化铝载体浸渍镍盐的二元催化剂和普通氧化铝浸渍的镍镧铝的三元催化剂作为对比。通过CO2-TPD实验及XRD、XPS和IR技术表征,考察了制备方法和氧化镧改性对催化剂吸附二氧化碳能力的影响。结果表明,超细样品的吸附能力明显高于浸渍型催化剂,具有明显的纳米粒子效应,La2O3的加入,提高了强碱中心数,使催化剂的吸附能力显著增强,且不受制备方法的影响,还原后的镍物种吸附CO2后,与载体之间的相互作用被消弱,容易被重新氧化成粒度较大的氧化镍晶粒。  相似文献   

11.
Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) are non-polar, stable, organic sulfur compounds found in liquefied petroleum gas, and their oxidation in the atmosphere results in the formation of tropospheric sulfur dioxide, which is subsequently converted into sulfuric acid, as the main factor of acid rain. In the present study, adsorption processes were devised based on the use of modified zeolite impregnated with rare-earth metals (Ce, La or Pr) for the adsorption of DMDS and DMS, and their sorption capacities were compared with that of commercial zeolite [Zeolite-Y, Ultra Stable Y(USY)]. The adsorption capacities of adsorbents were tested using a micro liquid flow reactor at room temperature. USY impregnated with cerium oxide (UC-10) had excellent DMDS and DMS adsorption capacities as compared with the other adsorbents tested. It was found that impregnation of USY with rare-earth metal such as Ce improved the sulfur adsorption capacity of zeolite. The form of the Ce promoter impregnated into USY was determined by FT-Raman spectroscopy. Adsorbents were characterized by X-ray fluorescence spectrometer, X-ray diffraction, and BET and the results obtained are discussed.  相似文献   

12.
超临界CO_2溶胀聚合物的研究及其应用   总被引:1,自引:0,他引:1  
本文介绍超临界CO2 溶胀聚合物的研究及其应用 ,包括聚合物与超临界CO2 相互作用 ,溶胀行为的理论模型以及溶胀后的聚合物的用途 ,如制备微孔聚合物材料、渗透小分子和超临界溶胀聚合等  相似文献   

13.
Titania-silica mesoporous composites have been prepared using polyethylene glycol (PEG) 20,000 as a template direction reagent with the assistance of supercritical carbon dioxide (SC CO(2)). For this preparation method, the composite precursors of tetrabutyl titanate (TBTT) and tetraethyl orthosilicate (TEOS) were dissolved in supercritical CO(2) and impregnated into PEG 20,000 using SC CO(2) as swelling agent and carrier. After removal of the PEG template by calcination in air at suitable temperatures, porous titania-silica composites were obtained. Effects of CO(2) pressure and temperature have been studied on the impregnation ratio during the supercritical fluid condition. The composite products were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), FTIR spectroscopy, nitrogen sorption-desorption experiments, scanning electronic microscope (SEM), and transmission electron microscope (TEM). XRD and nitrogen sorption-desorption experimental results indicate that the titania-silica composite crystallized in anatase phase and has a preferable BET surface area up to 301.98 m(2)/g. It was also demonstrated that the microstructure and macroproperty of TiO(2)/SiO(2) composites depend strongly on the experimental pressure during the impregnation process in SC CO(2). At suitable CO(2) pressure, silica even can be found in a single crystalline structure in nature by observation of TEM. At the same time, SEM indicates that the composite product existed in a spheric form or a cubic form inserted with many holes. So this work provides a new route to control and obtain the special micrography of TiO(2)/SiO(2) composites with the aid of suitable polymer templates in supercritical CO(2).  相似文献   

14.
Zirconia nanoparticles modified by barium oxide or magnesium oxide were synthesized by using a co-precipitation process followed by ethanol supercritical drying. The nanoparticles obtained were further calcined at 873 K. BET surface area, XRD, and TGA were used to characterize the prepared samples. Isotherms of N2 and CO2 adsorption on these modified zirconia nanoparticles were measured at various temperatures. Additions of BaO or MgO resulted in an increase in CO2 adsorption capacity of the modified zirconia particles. Results also show that BaO as a modifier is more effective than MgO in enhancing the CO2 adsorption capacity of zirconia. At 1 bar and 473 K, Ba modified zirconia adsorbs approximately 0.25 mmol/g of CO2.  相似文献   

15.
Unusual sorption has been reported in thin polymer films exposed to near-critical CO2. When the supercritical fluid approaches the critical point, the film appears to thicken, but it is not clear whether the film swells or there is an adsorption layer on the film surface. A combination of the gradient theory of inhomogeneous systems and the Sanchez-Lacombe equation of state has been used to investigate this phenomenon. It is shown analytically that surface adsorption on an attractive surface is proportional to the compressibility of the fluid. We have also investigated numerically the sorption of supercritical CO2 on poly(dimethylsiloxane) and polyisobutylene, and supercritical 1,1-difluoroethane on polystyrene. By calculating the Gibbs adsorption and adsorption layer thickness of the supercritical fluids, we found in all cases (different substrates, different supercritical fluids) that maximum adsorption occurs when the supercritical fluid is near its compressibility maximum.  相似文献   

16.
In the present work the supercritical fluids argon, methane, nitrogen, carbon dioxide, ethane, ethylene and propane were picked out as examples, and the results of analysis concerning the adsorption of these fluids at activated carbon Norit R1 (Norit Company, Germany) and SCS-3 (ISPE, Kiev) at different temperatures up to a pressure of 50 MPa are presented and discussed in this paper. The principle of working of the measuring device is described in this context as well.A three-parameter isothermal equation is used to represent the adsorption equilibrium. The isothermal equation is based on a physical model concept which has already been used for the modelling of adsorption processes with a pressure up to 15 MPa.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
Adsorption isotherms for supercritical fluids are calculated using lattice theory. Results are compared with experimental data for methane on graphon and for carbon dioxide on coal. It is shown that the model reflects the peculiar features in adsorption isotherms of supercritical fluids (in particular, a maximum in the adsorption with increasing pressure). The analysis shows that there is two layer adsorption over a wide range of densities.  相似文献   

18.
Polycaprolactone (PCL) is widely used in biomedical applications as electrospun fibers or porous foams. As PCL is synthetic polymer, many researchers have explored blends of PCL–gelatin to combine mechanical and bioactive properties of individual components. High pressure carbon dioxide (CO2) has been studied to foam and impregnate many biocompatible polymers. In case of PCL–gelatin blends, certain compositions can be swelled reversibly under high pressure CO2 without permanent deformation. This allows successful impregnation of PCL–gelatin blends under CO2. This study summarizes effect of different treatments adopted during impregnation process including high pressure CO2 on several blend compositions of PCL–gelatin blends. Stress relaxation, polymer melting and dissolution were observed during several treatments which affects porosity and scaffold structure significantly. Results summarized in this study will aid in optimum selection of PCL–gelatin blend composition for biomedical applications. Furthermore, CO2 solubility in polymers is restricted due to thermodynamic limitations but can be altered in the presence of a co-solvent to produce better foams. PCL can be foamed using supercritical CO2. However, CO2 foaming of PCL–gelatin blend becomes challenging to simultaneous swelling of PCL and compression of gelatin providing blend structural stability. This study has demonstrated ability of supercritical CO2 to foam PCL–gelatin blends in presence of water to create porous structure. These foams were subjected post-fabrication crosslinking and supercritical CO2 without losing porosity of foams. Thus, creating a strategy to use environmentally benign processes to fabricate, crosslink and impregnate porous scaffolds for biomedical applications.  相似文献   

19.
An analytical method of micropore filling of a supercritical gas   总被引:2,自引:0,他引:2  
K. Kaneko  K. Murata 《Adsorption》1997,3(3):197-208
The supercritical gas adsorbed in the micropore having a strong molecular field was presumed to transform into the quasi-vapor to be filled in the micropore (quasi-vaporization adsorption mechanism). The Dubinin-Radushkevitch (DR) equation for micropore filling of vapor was extended to the quasi-vaporized supercritical gas using the quasi-saturated vapor pressureP 0 q and the inherent micropore volumeW L . The reason why the concepts ofP 0q andW L were introduced was explained with the molecule-pore interaction potential theory which is based on the Lennard-Jones interaction. The extended DR equation was named the supercritical DR equation. TheW L was evaluated by the Langmuir plot of the adsorption isotherm for a supercritical gas and both ofP 0q andW L provided the single reduced adsorption isotherms of supercritical NO, N2, and CH4 on activated carbon fibers and high surface area carbons were analyzed by the supercritical DR plots. The wide applicability of the reduced adsorption isotherm to these adsorption data was explicity shown. The two phase model of the organized and confined fluids was proposed in order to improve the quasi-vaporization adsorption mechanism.  相似文献   

20.
The solvation parameter model is a useful tool for delineating the contribution of defined intermolecular interactions to retention of neutral molecules in separation systems based on a solute equilibrium between a gas, liquid or fluid mobile phase and a liquid or solid stationary phase. The free energy for this process is decomposed into contributions for cavity formation and the set up of intermolecular interactions identified as dispersion, electron lone pair, dipole-type and hydrogen bonding. The relative contribution of these interactions is indicated by a series of system constants determined by the difference of the defined interaction in the two phases. The interpretation of these system constants as a function of experimental factors that affect retention in the chromatographic system provides the connection between relative retention (selectivity) and the control variables for the separation system. To aid in the understanding of these processes we perform an analysis of system constants for gas chromatography, liquid chromatography, supercritical fluid chromatography and micellar electrokinetic chromatography as a function of different experimental variables as a step towards gaining a theoretical understanding of selectivity optimization for method development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号