首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Takayanagi T  Dasgupta PK 《Talanta》2005,66(4):823-830
Ozone has become the oxidant of choice for water disinfection, especially in large water treatment facilities. This paper describes a fast and sensitive method for the determination of ozone content by reaction with photoactivated chromotropic acid (CA, 4,5-dihydroxynaphthalene-2,7-disulfonic acid), which results in intense chemiluminescence (CL). Freshly ozonated water from a recirculating ozonizer/reservoir is injected into a carrier stream of deionized water in the flow-injection mode. This flow mixes with a stream of photoactivated CA solution in a spiral cell placed directly on top of an inexpensive miniature (8 mm diameter active area) photomultiplier tube (PMT). Alkaline CA is photoactivated by passing it through a FEP-Teflon® coil (residence time ∼ 50 s) wrapped around a 1 W UV lamp emitting at 254 nm; without photoactivation, the signal is ∼70-fold lower. The S/N = 3 limit of detection for aqueous ozone is 3 μg l−1 and good response slope is obtained up to an ozone concentration of 1.4 mg l−1, the highest that could be made in this study. The response obeyed a quadratic equation with r2 = 0.9984. No interference from permanganate ion is observed. The proposed system was applied to the monitoring of ozonation status of a playa lake water that exhibited significant ozone demand.  相似文献   

2.
Poly(vinyl alcohol) (PVAL) forms a strong hydrogen-bond complex with ozone. The interaction energy is of the order of 47.3 kJ/mol as calculated from the blue shift undergone by the ozone absorption band in the UV after its complexation with PVAL. This fact may have many important practical implications in the application of PVAL in wastewater treatment both in terms of O3 dissolution and persistence in water. Furthermore, PVAL is easily biodegradable but it is also slowly degraded by ozone. It is shown by viscometry, electrical conductimetry and by pH measurements that PVAL is degraded by ozone attack with extensive chain breaking. By FT-IR spectroscopy it has been shown that the final product is a PVAL oligomer with numerous ketonic groups along the main oligomer backbone and with carboxylic end groups. A mechanism of ozone degradation of PVAL has been presented and discussed. The chain scission is based on the ozone oxidation of the alcoholic groups of PVAL with formation of ketonic groups which in turn are the source of a keto-enol tautomerism which leads to random chain scission by further O3 attack. Viscometric measurements show that the main viscosity drop of PVAL is achieved when a nominal stoichiometric ratio of O3/PVAL < 0.05 is reached which means one ozone molecule for every >20 PVAL monomeric units. For comparison PVAL has been oxidized also with paraperiodic acid.Ozonized PVAL has been studied by thermal analysis (TGA, DTG and DTA) in comparison to a reference untreated PVAL under N2. The oxidation of PVAL causes its complete amorphization since the crystalline melting point of PVAL at 235 °C is no longer detectable in the case of ozonized PVAL. In any case ozonized PVAL shows a better thermal stability which can be confirmed for instance by a higher maximum decomposition rate temperature as measured by DTG. This result is in agreement with theoretical calculations made by group increments according to Van Krevelen's method which predicts a higher decomposition temperature for a PVAL having ketonic groups in place of alcoholic moieties in the main polymer backbone.  相似文献   

3.
This paper reports an attempt at acquiring phase-equilibrium pressure (p) versus temperature (T) data for ozone-containing clathrate hydrates formed from an ozone + oxygen gas mixture, a hydrophobic hydrate-forming liquid, and water in the liquid state. For dealing with ozone (O3), a chemically unstable material continuously decaying to oxygen (O2) in the gas phase, we devised a new method, i.e., a modified pressure-search method, to determine the equilibrium p-T conditions while maintaining the ozone concentration in the gas phase nearly constant by repeatedly replacing the contents of the gas phase with a freshly generated O3 + O2 mixture. Using carbon tetrachloride (CCl4) as the hydrophobic hydrate-forming liquid, we obtained equilibrium p-T data in the range of 0.167 MPa ≤ p ≤ 0.361 MPa and 275.6 K ≤ T ≤ 277.3 K in the presence of a gas phase containing O3 at the molar concentration of 6.9 ± 0.8%. We also obtained, for comparison, the corresponding p-T data, using pure O2 gas, instead of the O3 + O2 mixture, and the conventional pressure-search method. The two data groups obtained from the O3-containing and O3-free systems, respectively, show simple, mutually consistent p-T relations each well fitted by the Clausius-Clapeyron equation assuming a constant enthalpy of hydrate dissociation. The paper also describes our additional attempt at obtaining equilibrium p-T data using 1,1-dichloro-1-fluoroethane (R141b) as a substitute for CCl4. Because of the partial decomposition of R141b due to the coexistence of O3 and water, however, we obtained only limited data which are tentative in nature.  相似文献   

4.
An amperometric sensor capable of detecting ozone in the low ppb range was developed. The most suitable electrochemical cell was based on a gold-Nafion electrode with 0.5 M H2SO4 as internal electrolyte solution. It is demonstrated, that by careful selection of the experimental conditions such as electrode materials, electrolyte solution and applied potential the determination of low concentrations of ozone in air is possible with detection limits of 0.6 ppb. Cross-sensitivities to the major inorganic gaseous species found in the atmosphere, are also presented, and the use of a chemical filter to circumvent the interference by nitrogen dioxide is described.  相似文献   

5.
This study was conducted to investigate the effect of a photocatalysis/oxidant system for the treatment of humic acid and hazardous heavy metals in aqueous solutions. Hydrogen peroxide, ozone, and potassium peroxodisulfate were tested as oxidants. The effect of oxidant concentration was conducted with a pH of 7, a UV intensity of 64 W, and a TiO2 dosage of 0.3 g L−1. The oxidant addition in the UV/TiO2 system enhanced the degradation efficiency of humic acid and hazardous heavy metals compared to no addition of an oxidant. The addition of oxidants over the amounts of H2O2 50 mg L−1, O3 20 g m−3, and K2S2O8 50 mg L−1 inhibits the system efficiency. The negative effect of higher oxidant concentrations likely results from OH radical quenching caused by the excess oxidant. Therefore, the optimal dosages of oxidants such as a hydrogen peroxide, ozone, and potassium peroxodisulfate were found to be 50 mg L−1, 20 g m−3, and 50 mg L−1, respectively. The degradation efficiency of UV/TiO2/oxidant systems for the removal of humic acid and hazardous heavy metals was much greater in the UV/TiO2/H2O2 system using H2O2 as an oxidant.  相似文献   

6.
Traditionally the monitoring of atmospheric pollutants is aimed at managing accidents and short-term actions for the protection of human health on local and regional scales. These monitoring networks required continuous measurements with high time resolution, involving costly equipment, operation and maintenance. More recent simulations with mathematical models and scenario-building on regional, continental and global scales, as well as studies of environmental personal exposure are demanding three main types of monitoring design, where need for special resolution surpasses the one of temporal resolution: remote places, where no electric power nor trained human resources are available; validation of dispersion simulation by mathematical modeling on regional to larger scales; indoor measurements where people are acting under noise restriction such as residences, school and hospitals. To meet these demands environmental passive samplers for atmospheric gaseous pollutants have been developed and applied for different situations and environments of Brazil. Passive samplers were developed based on molecular diffusion of gas through a static layer of air with fixed filters impregnated with a specific solution for SO2, NO2, O3 and H2S and used in the following situations: in remote forest area, urban areas with different characteristics - near the sea, with clean ocean air masses coming in and in areas under direct industrial influence. The passive samplers showed good performance when exposed to different types of areas and during different periods: accuracy of measurements, based on standard deviation, were within the recommended limit by the European Union of ± 25% for this type of device and precision below the maximum of 20% cited in the literature, with variation of 2.0 to 16% in the case of these work. The passive devices were able of measuring concentrations very low as those found in the Amazon region (0.58 ± 0.05 µg m− 3 SO2 and 1.10 ± 0.07 µg m− 3 NO2) and higher concentrations in industrial areas (20.0 ± 1.3 µg m− 3 SO2 e 21.0 ± 1.3 µg m− 3 NO2).  相似文献   

7.
The reaction of the O3 addition to double bonds of the limonene in the gas phase has been investigated using ab initio methods. Four different possibilities for the O3 addition to the double bonds, which correspond to the two C–C double bonds (endocyclic or exocyclic), and two different orientations of each C–C double bonds, have been considered. The corresponding rate constants have been calculated using the transition-state theory (TST) at the CCSD(T)/6-31G(d) + CF//B3LYP/6-311+G(d,p) level of theory. The high-pressure limit of the overall rate constant at 298 K is found to be ∼2.92 × 10−16 cm3 molecule−1 s−1 that is in a good agreement with the experimental data, and the rate constants of the four individual reaction channels turn out to be 2.1 × 10−16 cm3 molecule−1 s−1, 1.2 × 10−17 cm3 molecule−1 s−1, 6.5 × 10−17 cm3 molecule−1 s−1 and 5.1 × 10−18 cm3 molecule−1 s−1 for 1-endo, 2-endo, 1-exo and 2-exo, respectively.  相似文献   

8.
Summary A denuder sampling method combined with HPLC analysis for the simultaneous determination of formaldehyde and ozone in ambient air is described. It is based on the reactions of CH2O and O3 with 2,4-dinitrophenylhydrazine (DNPH) and 4-allyl-2-methoxyphenol (eugenol)_respectively, both acting as coatings of two annular denuders connected in series. Formaldehyde released from the ozonolysis of eugenol is quantitatively collected on a third downstream DNPH-coated denuder. The two DNPH denuders are then extracted and analyzed as hydrazone derivative by HPLC with UV absorbance detection.The stoichiometric factor of the eugenol-ozone reaction was found to be 2.0±0.1 moles of O3 per mole of CH2O. The limits of detection are 0.8gm–3 CH2O and 3gm–3 O3 for 100l air sampled, corresponding to 1-h sampling at 1.7l min–1.  相似文献   

9.
Shi Shu 《Talanta》2010,82(5):1884-1891
Dynamic gas sampling using solid phase microextraction (SPME) was evaluated for recovery of reactive terpenes and terpenoids in the presence of ozone. For limonene, α-terpineol and dihydromyrcenol in the 20-60 ppb range, this method achieves >80% recovery for ozone mixing ratios up to 100 ppb. Both the experimental results and a model analysis indicate that higher ozone concentrations and longer sampling times result in lower percent recovery. Typically greater than 90% recovery and ppb level method detection limits were achieved with a 5 min sample time. Increasing the flow rate from 100 to 400 sccm flow (5-20 cm s−1) through the active sampler did not significantly affect sensitivity or recovery in most cases, probably due to negligible mass-transfer improvements. The recovery for each compound improves when sampling from a mixture of different species than that from a single compound sample. This may be due to competition for ozone amongst adsorbed species. Dynamic SPME sampling can improve detection and quantification of terpenes in reactive environments, especially for low vapor pressure (<5 mm Hg at 25 °C) compounds that can be adsorbed to ozone scrubbers used in other methods.  相似文献   

10.
An innovative and versatile functional colorimetric sensor for melamine (MA) and H2O2 was developed with simplicity, excellent selectivity and ultrasensitivity. The detection mechanism was based on the “oxidative etching-aggregation” of silver nanoparticles (AgNPs) by the cooperation effect of MA and electron acceptors such as H2O2, ozone or Fe(NO3)3. The detection limits of this method for MA could reach as low as 0.08 nM, 0.16 nM and 3 nM when H2O2, ozone or Fe(NO3)3 was used as an electron acceptor, respectively. When using H2O2 as a typical electron acceptor, the method enabled the detection of H2O2 with a detection limit of 0.2 nM. This proposed method offered a new way to design MA and H2O2 sensors and might be easily extended to detect other nucleophilic reagents and electron acceptors based on colorimetric sensors.  相似文献   

11.
Tm3+/Yb3+ codoped rod-like YF3 nanocrystals were synthesized through a facile hydrothermal method. After annealing in an argon atmosphere, the nanocrystals emitted bright blue and intense ultraviolet (UV) light under a 980-nm continuous wave diode laser excitation. Up-conversion emissions centered at ∼291 nm (1I6 → 3H6), ∼347 nm (1I6 → 3F4), ∼362 nm (1D2 → 3H6), ∼452 nm (1D2 → 3F4), ∼476 nm (1G4 → 3H6), ∼642 nm (1G4 → 3F4), and ∼805 nm (3H4 → 3H6) were recorded using a fluorescence spectrophotometer. Especially, enhanced UV emissions were studied by changing Yb3+/Tm3+ doping concentrations, the annealing temperatures, and the excitation power densities. A possible mechanism, energy transfer-cross relaxation-energy transfer (ET-CR-ET), was proposed based on a simple rate-equation model to elucidate the process of the enhanced UV emissions.  相似文献   

12.
13.
Direct photocarbonylation of methane to give acetaldehyde occurred when a mixture of methane and CO dissolved in benzene was subjected to UV irradiation at λ < 290 nm. The reaction was accelerated by rhodium RhCl(CO)(PR3)2 complexes, where R = alkyl, Ph, or OPh.  相似文献   

14.
Air pollutants data from semi-continuous measurements at multiple sampling sites in Taipei metropolitan area of Taiwan was obtained by collecting air samples in canisters. The hydrocarbon composition was determined by using GC/MS and GC/FID. The air samples were pre-concentrated onto glass beads prior to separation by PLOT and DB-1 columns of GC. The method showed detection limit of <1 ppb and relative standard deviation in the range of 5-30% for different compounds. Aromatic hydrocarbons (toluene, benzene, etc.) and aliphatic hydrocarbons (ethylene, acetylene, propane, etc.) were correlated primarily to determine the source of emission. The estimated hydrocarbons were ranked according to their abundance and photochemical reactivity. The criteria pollutants, ozone and NO2 were measured by UV-differential optical absorption spectroscopy (UV-DOAS), and were utilized to determine the relative importance of non-methane hydrocarbons (NMHC) and significant contribution of NO2 in limiting ozone formation. The obtained results suggest that ozone formation in Taipei city is probably limited by the supply of non-methane hydrocarbons. The concentration profile of targeted pollutants was compared to other metropolitan areas to determine air quality and the pollutant sources.  相似文献   

15.
The influence of technological parameters on the dehydroiodination of perfluoroalkylethene iodides (CF3)2CF(CF2CF2)nCH2CH2I, where n = 1, 2, 3 and 4, has been investigated. The most advantageous conditions for the two-stage oxidation of (CF3)2CF(CF2CF2)nCHCH2, with ozone in the first stage, followed by the oxidation with hydrogen peroxide to the perfluorocarboxylic acids, were determined. The effects of temperature and time on the conversion of perfluoroalkylethenes during the oxidation with ozone were studied. In the second stage, the selectivity of transformation (of each homologue) to the perfluorocarboxylic acid in relation to the theoretical amount resulting from a quantity of perfluoroalkylethene used and the conversion of perfluoroalkylethene in the temperature range of 10-80 °C has been determined.  相似文献   

16.
We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C9H9HgNaO2S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH4 solution, and AFS detection in an Ar/H2 miniaturized flame. The method was linear in the 0.01–2 μg mL−1 range, with a LOD of 0.003 μg mL−1. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL−1.  相似文献   

17.
A simple synthetic route in mild condition to obtain nanosized NaTaO3 powder with cubic morphology is reported in which the compound was hydrothermally prepared at 120 °C for 12 h. The cubic crystalline structure of this nanosized NaTaO3 product was ensured by using XRD and TEM. The band gap of the nanosized NaTaO3 was 3.96 eV based on UV spectrum. The hydrothermal process probably follows the dissolution-precipitation mechanism. Also this NaTaO3 powder showed high photoreactivity under UV light in gas phase and liquid phase photoreactions.  相似文献   

18.
A series of experimental measurements of ozone concentration produced by irradiation of noble gas (He, Ne, and Ar)-O2 and noble gas-O2-SF6 mixtures with energetic (MeV) helium and lithium ions are reported. Continuous irradiations at dose rates of 1015–1017 eV cm –3 s –1 for a few hundred milliseconds were used. The resulting ozone concentration was found to be nonlinear with dose rate for a given irradiation time. This nonlinearity was effectively reduced by an increase in noble gas pressure. Few mole percent addition of SF6 generally resulted in an increase in the ozone concentration. This increase was highest for lower noble gas pressures and longer irradiation times. Further SF6 addition, however, caused a reduction in the ozone concentration. Results are explained by considering the relevant reactions responsible for ozone production and loss.  相似文献   

19.
The effect of UV light on Weiss temperature and ESR spectra in 1-isopropyl-3, 3, 5′, 6′-tetramethylspiro[indolin-2,2′-[2H]pyrano[3,2-b]pyridinium] tris(oxalato)chromate (III) (Sp3Cr(C2O4)3) has been found. Additional line has been observed in the ESR spectra of irradiated samples in “strong” magnetic fields of ~15 kOe. The analysis of angular dependences of the ESR spectra allowed a contribution of Cr3+ ions to magnetic properties of Sp3Cr(C2O4)3 to be determined. The zero-field splitting parameters D=0.619 cm−1, E=0.024 cm−1 were derived from the experimental data. The parameters were typical for Cr3+ in the chromium oxalate. Weiss temperature changed sign from 25 to −25 K under UV irradiation. The value of Weiss temperature and its changing cannot be explained by exchange interaction, dipole-dipole interaction or the effect of crystal field. The existence of Weiss temperature is explained by the changes in amount and spin of paramagnetic particles. The change is due to thermoactivated redistribution of electrons between chromium ions and spiropyrane molecules. Light-induced transfer of electrons is also explaining the change in sign of Weiss temperature under UV irradiation.  相似文献   

20.
In a study using UV photoelectron spectroscopy (PES) of the atmospherically relevant reaction
CH3SCH3 + Cl2 → CH3SCH2Cl + HCl
bands associated with a reaction intermediate have been observed. These have been assigned to ionization of the covalently bound molecule (CH3)2SCl2 on the basis of the intensity of the observed bands as a function of reaction time, molecular orbital calculations of vertical ionization energies and evidence from infrared spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号