首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simvastatin (SS) is an effective cholesterol-lowering medicine, and is hydrolyzed to simvastatin acid (SSA) after oral administration. Due to SS and SSA inter-conversion and its pH and temperature dependence, SS and SSA quantitation is analytically challenging. Here we report a high-throughput salting-out assisted liquid/liquid extraction (SALLE) method with acetonitrile and mass spectrometry compatible salts for simultaneous LC-MS/MS analysis of SS and SSA. The sample preparation of a 96-well plate using SALLE was completed within 20 min, and the SALLE extract was diluted and injected into an LC-MS/MS system with a cycle time of 2.0 min/sample. The seamless interface of SALLE and LC-MS eliminated drying down step and thus potential sample exposure to room or higher temperature. The stability of SS and SSA in various concentration ratios in plasma was evaluated at room and low (4 °C) temperature and the low temperature (4 °C) was found necessary to maintain sample integrity. The short sample preparation time along with controlled temperature (2-4 °C) and acidity (pH 4.5) throughout sample preparation minimized the conversion of SS → SSA to ≤0.10% and the conversion of SSA → SS to 0.00% The method was validated with a lower limit of quantitation (LLOQ) of 0.094 ng mL−1 for both SS and SSA and a sample volume of 100 μL. The method was used for a bioequivalence study with 4048 samples. Incurred sample reproducibility (ISR) analysis of 362 samples from the study exceeded ISR requirement with 99% re-analysis results within 100 ± 20% of the original analysis results.  相似文献   

2.
Selenium losses in river, ground, snow-melt and tap water samples, and the recovery of selenite, selenate and selenomethionine added to purified water have been studied. In 1-litre high-density polyethylene bottles, tap, river and snow-melt water samples (at Se concentrations of 44.5–138 ng/l) could be stored at 4 °C for up to 15 days without Se losses. In similar samples stored at room temperature Se losses of 13–25% after 15 days were found, except for groundwater, which showed no Se losses during storage for 13 months at room temperature or at 4 °C. Selenite and selenate added to purified water were recovered without losses after 15 days at 4 °C, while 7.5% of selenomethionine was lost. The stability of different chemical forms of Se during storage followed the order: selenate > selenomethionine > selenite. It is recommended that unacidified water samples should not be kept in polyethylene bottles at room temperature for more than 1 week, nor stored at 4 °C for more than 2 weeks, before analysis for Se.  相似文献   

3.
The aim of this study was to investigate the pharmacokinetics of clenbuterol in the ostrich as no such data is available. Clenbuterol (2 mg) was given as a single oral dose to nine ostriches. Blood samples were collected over a period of 96 h after administration and urine for a period of 5 d. Plasma and urine samples were frozen at -20 degrees C pending analysis. Clenbuterol was quantified using a gas chromatograph-mass selective detector. The method for quantification of clenbuterol in plasma was validated by analysing spiked quality control samples at different concentrations. The limit of quantification was determined to be 0.75 ng ml-1 with an absolute recovery of more than 80%. The geometric mean maximum plasma clenbuterol concentration was 4.40 ng ml-1 with 3.0 h as the median time for maximum concentration. The plasma elimination half-life was 19.7 h. The clenbuterol concentration was above 0.75 ng ml-1 in plasma for 48 h and above 1.0 ng ml-1 in urine for 5 d. These data can be useful in residue analysis for clenbuterol in ostriches.  相似文献   

4.
Catecholamines, as endogenous substances, are subject to biological degradation. The conditions of plasma handling for the determination of norepinephrine were investigated by using plasma samples of patients and control subjects with special regard to temperature and duration of storage. Previous studies have reported a remarkable i.v. stability of plasma norepinephrine for several hours. Here these findings were supported in a series of plasma samples which were kept either at 0° C or at room temperature. Another series of samples, which had been frozen immediately after collection, stored and rethawed, showed, however, great losses in norepinephrine within 1 to 2 h upon standing. This degradation of norepinephrine could not be attributed to monomaine oxidase (MAO) activity, because the addition of the MAO inhibitor pargyline was found to have no influence on the stability of norepinephrine. Recommendations for handling and storing of plasma samples for norepinephrine determinations are given.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants in both living and working environments. The aim of this study was the development of a headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry (HS-SPME/GC-IDMS) method for the simultaneous quantification of 13 PAHs in urine samples. Different parameters affecting PAHs extraction by HS-SPME were considered and optimized: type/thickness of fiber coatings, extraction temperature/time, desorption temperature/time, ionic strength and sample agitation. The stability of spiked PAHs solutions and of real urine samples stored up to 90 days in containers of different materials was evaluated. In the optimized method, analytes were absorbed for 60 min at 80 °C in the sample headspace with a 100 μm polydimethylsiloxane fiber. The method is very specific, with linear range from the limit of quantification to 8.67 × 103 ng L−1, a within-run precision of <20% and a between-run precision of <20% for 2-, 3- and 4-ring compounds and of <30% for 5-ring compounds, trueness within 20% of the spiked concentration, and limit of quantification in the 2.28-2.28 × 101 ng L−1 range. An application of the proposed method using 15 urine samples from subjects exposed to PAHs at different environmental levels is shown.  相似文献   

6.
Saponin is a biopesticide used to suppress the growth of the golden apple snail population. This study aims to determine the stabilized conditions for saponin storage. The maceration process was used for saponin extraction, and for saponin concentration, progressive freeze concentration (PFC) was used. Afterwards, stability analysis was performed by storing the sample for 21 days in two conditions: Room temperature (26 °C) and cold room (10 °C). The samples kept in a cold room were sterilized samples that undergo thermal treatment by placing the sample in the water bath. The non-sterilized samples were kept in room temperature condition for 21 days. The results showed that saponin stored in the cold room (sterilized sample) has low degradation with higher concentration than those stored at room temperature in stability analysis with the highest saponin concentration (0.730 mg/mL) at a concentration temperature of −6 °C and concentration time of 15 min. The lowest saponin concentration obtained by saponin stored at room temperature (non-sterilized sample) is 0.025 mg/mL at a concentration temperature of −6 °C and concentration time of 10 min. Thus, the finding concluded that saponin is sensitive to temperature. Hence, the best storage condition to store saponin after thermal treatment is to keep it in a cold room at 10 °C.  相似文献   

7.
In this paper, a novel flow chemiluminescence (CL) clenbuterol sensor based on molecularly imprinted polymer (MIP) on line enrichment nanogram clenbuterol and chemiluminescence reaction of potassium permanganate and formaldehyde in the polyphosphate enhanced by clenbuterol. Clenbuterol in the urine was selectively adsorbed on the clenbuterol-imprinted polymer, which was packed into the flow cell. The formaldehyde and the polyphosphate with potassium permanganate flowed through the flow cell and reacted with the on line adsorbed clenbuterol and produced strong CL. The results show that the sensor was reversible. The CL intensity was linear with clenbuterol concentration from 1.0 × 10−9 g/mL to 5.0 × 10−8 g/mL. The detection limit was 3.0 × 10−10 g/mL. The R.S.D. for ng/mL clenbuterol was less than 5% (n = 3). The present method offered a high selectivity and sensitivity that made the quantitative analysis of trace clenbuterol (ng/mL) in the animal urine sample.  相似文献   

8.
Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are direct alcohol consumption markers widely used nowadays for clinical and forensic applications. They are detectable in blood and urine even after consumption of trace amounts of ethanol and for a longer time frame, being detectable even when no more ethanol is present. The instability of EtG against bacterial degradation in contaminated urine samples and/or the possible postcollection synthesis of this metabolite in samples containing, e.g., Escherichia coli and ethanol, may cause false identification of alcohol uptake. Therefore, it is of paramount importance to constrict these error sources by inhibition of any bacterial growth causing hydrolization or synthesis of EtG. This study evaluates a new method of collecting urine samples on filter paper, dried urine spots (DUS), for simultaneous detection of EtG, EtS and creatinine, having the great advantage of inhibiting bacterial activity. In addition, a method validation for the determination of EtG and EtS in DUS was performed according to the FDA guidelines. Sterile-filtered urine was spiked with EtG and EtS, inoculated with E. coli and incubated. Liquid and dried urine samples were collected after various time intervals up to 96 h. Liquid samples were frozen immediately after collection, whereas aliquots for DUS were pipetted onto filter paper, allowed to dry and stored at RT until analysis 1 week after. The specimens were analyzed by LC–ESI–MS/MS. As expected, degradation of EtG, but not of EtS, was observed in contaminated liquid urine samples. However, the specimens collected on filter paper and stored at RT showed no degradation during storage. Therefore, collecting urine samples on filter paper for EtG and EtS analysis turns out to be a reliable method to avoid bacterial degradation of EtG and EtS, and consequently, stabilization of these ethanol metabolites is achieved. In addition, simultaneous measurement of creatinine content as an indicator of urine dilution helps to interpret the results. Method validation for EtG and EtS in DUS was satisfactory, showing the linearity of the calibration curves in the studied concentration range, good precision, accuracy and selectivity.  相似文献   

9.
Proper storage conditions of biological samples are fundamental to avoid microbiological contamination that can cause chemical modifications of the target analytes. A simple liquid chromatography/tandem mass spectrometry (LC/MS/MS) method through direct injection of diluted samples, without prior extraction, was used to evaluate the stability of phase II metabolites of boldenone and testosterone (glucuronides and sulphates) in intentionally poorly stored equine urine samples. We also considered the stability of some deuterated conjugated steroids generally used as internal standards, such as deuterated testosterone and epitestosterone glucuronides, and deuterated boldenone and testosterone sulphates. The urines were kept for 1 day at room temperature, to mimic poor storage conditions, then spiked with the above steroids and kept at different temperatures (?18°C, 4°C, room temperature). It has been possible to confirm the instability of glucuronide compounds when added to poorly stored equine urine samples. In particular, both 17β‐ and 17α‐glucuronide steroids were exposed to hydrolysis leading to non‐conjugated steroids. Only 17β‐hydroxy steroids were exposed to oxidation to their keto derivatives whereas the 17α‐hydroxy steroids were highly stable. The sulphate compounds were completely stable. The deuterated compounds underwent the same behaviour as the unlabelled compounds. The transformations were observed in urine samples kept at room temperature and at a temperature of 4°C (at a slower rate). No modifications were observed in frozen urine samples. In the light of the latter results, the immediate freezing at ?18°C of the collected samples and their instant analysis after thawing is the proposed procedure for preventing the transformations that occur in urine, usually due to microbiological contamination. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of this study is to validate isotope-dilution electrospray ionization tandem mass spectrometry (ESI-MS-MS) method with a dual-loop cleanup device for simultaneous quantitation of two benzene metabolites, trans, trans-muconic acid (ttMA) and S-phenylmercapturic acid (SPMA), in human urine. In this study, a pooled blank urine matrix from rural residents was adopted for validation of the analytical method. The calibration curve, detection limit, recovery, precision, accuracy and the stability of sample storage for the system have been characterized. Calibration plots of ttMA and SPMA standards spiked into two kinds of urine matrixes over a wide concentration range, 1/32-8-fold biological exposure indices (BEIs) values, showed good linearity (R > 0.9992). The detection limits in pooled urine matrix for ttMA and SPMA were 1.27 and 0.042 μg g−1 creatinine, respectively. For both of ttMA and SPMA, the intra- and inter-day precision values were considered acceptable well below 25% at the various spiked concentrations. The intra- and inter-day apparent recovery values were also considered acceptable (apparent recovery >90%). The ttMA accuracy was estimated by urinary standard reference material (SRM). The accuracy reported in terms of relative error (RE) was 5.0 ± 2.0% (n = 3). The stability of sample storage at 4 or −20 °C were assessed. Urinary ttMA and SPMA were found to be stable for at least 8 weeks when stored at 4 or −20 °C. In addition, urine samples from different benzene exposure groups were collected and measured in this system. Without tedious manual sample preparation procedure, the analytical system was able to quantify simultaneously ttMA and SPMA in less than 20 min.  相似文献   

11.
A new custom-built Peltier-cooled laser ablation cell is described. The proposed cryogenic cell combines a small internal volume (20 cm3) with a unique and reliable on-sample temperature control. The use of a flexible temperature sensor, directly located on the sample surface, ensures a rigorous sample temperature control throughout the entire analysis time and allows instant response to any possible fluctuation. In this way sample integrity and, therefore, reproducibility can be guaranteed during the ablation. The refrigeration of the proposed cryogenic cell combines an internal refrigeration system, controlled by a sensitive thermocouple, with an external refrigeration system. Cooling of the sample is directly carried out by 8 small (1 cm × 1 cm) Peltier elements placed in a circular arrangement in the base of the cell. These Peltier elements are located below a copper plate where the sample is placed. Due to the small size of the cooling electronics and their circular allocation it was possible to maintain a peephole under the sample for illumination allowing a much better visualization of the sample, a factor especially important when working with structurally complex tissue sections. The analytical performance of the cryogenic cell was studied using a glass reference material (SRM NIST 612) at room temperature and at −20 °C. The proposed cell design shows a reasonable signal washout (signal decay within less than 10 s to background level), high sensitivity and good signal stability (in the range 6.6–11.7%). Furthermore, high precision (0.4–2.6%) and accuracy (0.3–3.9%) in the isotope ratio measurements were also observed operating the cell both at room temperature and at −20 °C. Finally, experimental results obtained for the cell application to qualitative elemental imaging of structurally complex tissue samples (e.g. eye sections from a native frozen porcine eye and fresh flower leaves) demonstrate that working in cryogenic conditions is critical in such type of direct sample analysis.  相似文献   

12.
In the present paper, we develop a methodology for antimony speciation in occupationally exposed human urine samples by high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS). The methodology was applied to the determination of Sb(V), Sb(III) and (CH3)3SbCl2 (TMSb(V)). Retention time of Sb(V), Sb(III) and TMSb(V) species were 0.88, 2.00 and 3.61 and the detection limits were 0.18, 0.19 and 0.12 μg L− 1, for 100 μL loop injection respectively which is considered useful for elevated/occupationally exposed urine samples. Studies on the stability of antimony species in urine samples on the function of the elapsed time of preservation (4 °C) and storage (− 70 °C) were performed. Results revealed that antimony species are highly unstable at − 70 °C, probably due to co-precipitation reaction. In this kind of matrix transformation during preservation time may occur, such as oxidation of Sb(III) to Sb(V) and transformation into species that do not elute from the column. EDTA shows that it is able to stabilize Sb(III) for more than one week of preservation time at 4 °C avoiding co-precipitation during storage at − 70 °C. Finally the methodology was applied to occupationally exposed human urine samples. 25% of specimens present antimony levels (Sb(V)) of more than 5 μg L− 1.  相似文献   

13.
Human saliva is a biological fluid with emerging early detection and diagnostic potentials. However, the salivary proteome suffers from rapid degradation and thus compromises its translational and clinical utilities. Therefore, easy, reliable and practical methods are urgently required for the storage of human saliva samples. In this study, saliva samples from healthy subjects were collected and stored at room temperature (RT) and 4 °C for different lengths of time with and without specific protein stabilization treatments. SDS-PAGE was run to compare the protein profiling between samples. Reference proteins, β-actin and interleukin-1 β (IL1β), were chosen to evaluate salivary protein stability. Immunoassay was used for the detection of these target proteins. All data was compared with the positive control that had been kept at −80 °C. The results show that the salivary proteome that has been stored at 4 °C with added protease inhibitors was stable for approximately two weeks without significant degradation. By adding ethanol to the samples, the salivary proteome was stabilized at RT. After optimization, a simple, robust and convenient method is developed for the stabilization of proteins in human saliva that does not affect the downstream translational and clinical applications. The salivary proteome could be stabilized without significant degradation by adding ethanol at RT for about two weeks. This optimized method could greatly accelerate the clinical usage of saliva for future diagnosis.  相似文献   

14.
The stability of testosterone glucuronide (TG), epitestosterone glucuronide (EG) and the T/E ratio in urine has been studied. Samples were analyzed by gas chromatography coupled to mass spectrometry (GC/MS). Urine samples were submitted to a solid-liquid cleanup followed by extraction of unconjugated testosterone (T) and epitestosterone (E) with tert-butyl methyl ether (free fraction). The remaining aqueous phase was hydrolyzed with beta-glucuronidase and extracted at alkaline pH with n-pentane. Analytes were analyzed by GC/MS as their enol-trimethylsilyl (TMS) derivatives. The urine for stability testing was obtained from an excretion study after the administration of T to healthy volunteers. The homogeneity of the sample was verified before starting the stability study. The stability of TG and EG was evaluated at different storage conditions. For long-term stability testing, analyte concentration in urine stored at 4 degrees C and -20 degrees C was determined at different time intervals for 22 months. For short-term stability testing, analyte concentration was evaluated in urine stored at 37 degrees C for 3 and 7 days. The effect of repeated freezing (at -20 degrees C) and thawing (at room temperature) was studied for up to three cycles. Data obtained in this work demonstrated the stability of TG, EG and the T/E ratio in sterilized urine samples stored at 4 and -20 degrees C for 22 months and after going through repeated freeze/thaw cycles. Decreases in concentration were observed after 7 days of storage at 37 degrees C due to the partial cleavage of the glucuronide conjugates; however, the T/E ratio was not affected. These results show the feasibility of preparing reference materials containing TG and EG to be used for quality control purposes.  相似文献   

15.
Saline water samples from the Delaware Bay estuary were sampled, processed, and stored in a variety of ways to allow different methods of maintaining their integrity to be compared. Samples were processed onboard ship, immediately after collection, by extraction with ammonium pyrollidinedithiocarbamate in methyl isobutyl ketone. Duplicate samples were processed onshore after a variety of storage procedures. All samples were analyzed for copper and iron by atomic absorption spectrometry. Only samples filtered (<1 μm), acidified, and stored frozen gave extractable copper and iron results comparable with those for samples extracted immediately after collection. Cold storage with sample acidification in polyethylene containers appeared less satisfactory. Organic extracts from samples processed onboard are best retained in all-Teflon containers pending complete digestion and analysis onshore. Unless clean (ultra-filtered air) conditions can be ensured onboard, the estuarine water samples are best returned in a filtered, acidified, and frozen condition for onshore processing.  相似文献   

16.
A method using hollow fibre-protected liquid-phase microextraction (HF-LPME) with in situ derivatization followed by gas chromatography/mass spectrometry (GC/MS) was established for the analysis of β-agonists and β-blockers in urine. Because it can simultaneously extract and derivatize compounds of interest by methylbenzol and N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) in HF-LPME, the approach overcomes the drawbacks of considerable time-consuming and tedious operation, meanwhile improves enrichment multiple. The optimized conditions were extraction for 20 min at 35 °C with 5.0 μL of mixed extraction solvent (methylbenzol/MSTFA = 1:1, v/v) with stirring speed of 925 rpm in 5.0 mL sample under pH 12.0 and 14% (w/v) NaCl. The method provided very wide linear ranges (0.25–400 ng mL−1) and low detection limits in the range of 0.08–0.10 ng mL−1 for clenbuterol, metoprolol and propranolol while enrichment factors reached up to 256. The analytes could be determined in spiked urine by the method with high extraction efficacy (93.79–109.04% recoveries) and precision (<9.70% RSD). It has a satisfactory result for metoprolol in practical human urine samples for a single-dose administration of 50 mg after 36 h. The proposed method only needs few microliters of organic solvent and derivatizing agent; the operation is simple, convenient and rapid for the trace analysis of β-agonists and β-blockers in biological fluids; it can be readily generalized for high sample throughput. So, it is hopeful that the study will facilitate the monitoring of β-agonists and β-blockers in the competition sports.  相似文献   

17.
A gas chromatography–mass spectrometric method was developed in this study in order to determine fluoride in plasma and urine after derivatization with 2-(bromomethyl)naphthalene. 2-Fluoronaphthalene was chosen as the internal standard. The derivatization of fluoride was performed in the biological sample and the best reaction conditions (10.0 mg mL−1 of 2-(bromomethyl)naphthalene, 1.0 mg mL−1 of 15-crown-5-ether as a phase transfer catalyst, pH of 7.0, reaction temperature of 70 °C, and heating time of 70 min) were established. The organic derivative was extracted with dichloromethane and then measured by a gas chromatography–mass spectrometry. Under the established condition, the detection limits were 11 μg L−1 and 7 μg L−1 by using 0.2 mL of plasma or urine, respectively. The accuracy was in a range of 100.8–107.6%, and the precision of the assay was less than 4.3% in plasma or urine. Fluoride was detected in a concentration range of 0.12–0.53 mg L−1 in six urine samples after intake of natural mineral water containing 0.7 mg L−1 of fluoride.  相似文献   

18.
A simple and sensitive procedure utilizing GC-MS for the identification and quantitation of clenbuterol in biofluids and tissues is described. This improved method utilizes trimethylboroxine for the derivatization of clenbuterol, requires only 1 mL/g of biological sample, and most importantly does not require an extra cleaning step for urine specimens prior to extraction. Linear quantitative response curves have been generated for derivatized clenbuterol over a concentration range of 5-200 ng/mL. The extraction efficiency at four representative points of the standard curve exceeded 90% in both specimen types (plasma and urine). Linear regression analyses of the standard curve in both specimen types exhibited correlation coefficients ranging from 0.997 to 1.000. The Limit of detection (LOD) and Limit of quantitation (LOQ) values for plasma specimens were determined to be 0.5 and 1.5 ng/mL respectively. For urine specimens, LOD and LOQ values were 0.2 and 0.7 ng/microL respectively. Percentage recoveries ranged from 91 to 95% for urine and 89 to 101% for plasma. Precision and accuracy (within-run and between-run) studies reflected a high level of reliability and reproducibility of the method. In addition to its reliability, sensitivity and simplicity, this modified procedure is more efficient and cost effective, requiring less time, only 1 mL of sample, and minimal amounts of extraction solvents. The applicability of the method for the detection and quantitation of clenbuterol in biological tissues of rats treated with the drug was demonstrated successfully. For comparative analysis of clenbuterol in plasma and liver samples, both GC-MS and enzyme immunoassay (EIA) methods are found to be suitable. Due to potential antibody-cross reactivity with EIA, the GC-MS method is the method of choice for most samples because of its specificity. However, the EIA method is considered the method of choice for analysis of clenbuterol found in concentrations below the limits of quantitation by GC-MS due to its sensitivity.  相似文献   

19.
A new method for the fast determination of isoflavones from soy beverages blended with fruit juices without the need of freeze-drying the sample was developed. During the method development, several parameters were studied: solvent (methanol and ethanol), sample:solvent ratio (5:1 to 0.2:1), temperature (10-60 °C) and extraction time (5-30 min). The most important parameter for the extraction of isoflavones from soy drinks was the sample:solvent ratio. The optimized method consists of extracting the sample with ethanol with a sample:solvent ratio of 0.2:1 on an ultrasound bath at 45 °C during 20 min. Also, samples were freeze-dried, extracted using conventional method and compared with the optimized method and no significant difference was observed on total and individual isoflavone concentration. The most representative samples from the Spanish market, with a wide variation of isoflavone concentration were analyzed using the optimized method. Differences between manufacturers reached an almost 10 times fold variation. Overall isoflavone concentration ranged from 6.7 to 58.2 mg L−1.  相似文献   

20.
A sensitive and effort-saving method was established and validated for the quantitative determination of recombinant Arg-Gly-Asp-hirudin (rRGD-hirudin) in human urine samples. The assay was performed on a uncoated fused silica capillary of 70 cm × 50 μm I.D. and a positive voltage of 30 kV was applied. The sample was injected under pressure of 50 mbar for 300 s and the temperature of capillary was kept 25 °C. Sheath liquid consisting of 30% methanol and 70% of 0.1% formic acid aqueous solution flowing at 7 μL/min was supplied to the CE-electrospray interface. Utilizing the dynamic pH junction technique, a lower limit of quantitation of approximately 35 nM was achieved (concentration coefficiency was about 100-fold) without complex sample preprocessing procedure. CE-MS conditions and parameters were also optimized to obtain better performance. The method has been successfully applied in clinical research of rRGD-hirudin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号