首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel solid phase extraction technique for the speciation of trace dissolved Fe(II) and Fe(III) in environmental water samples was developed by coupling micro-column packed with N-benzoyl-N-phenylhydroxylamine (BPHA) loaded on microcrystalline naphthalene to electrothermal vaporization inductively coupled plasma-optical emission spectrometry (ETV-ICP-OES). Various influencing factors on the separation and preconcentration of Fe(II) and Fe(III), such as the acidity of the aqueous solution, sample flow rate and volume, have been investigated systematically, and the optimized operation conditions were established. At pH 3.0 Fe(III) could be selectively retained by micro-column (20 mm × 1.4 mm, i.d.) packed with BPHA immobilized on microcrystalline naphthalene, and Fe(II) passed through the micro-column. Both Fe(II) and Fe(III) could be adsorbed by the micro-column at pH 6.5. Thus, the total Fe could be determined without the need for preoxidation of Fe(II) to Fe(III). The retained Fe(III) or the Fe(II) and Fe(III) was subsequently eluted by 0.1 ml of 1 mol l−1 HCl. The adsorption capacity of the solid phase adsorption material was found to be 45.0 mg g−1 for Fe(III) at pH 3.0 and 65.3 mg g−1 for Fe(II) at pH 6.5, respectively. The detection limit (3σ) of 0.053 μg l−1 was obtained with a practical enrichment factor of 156 at a sample volume of 17 ml. The relative standard deviations of 4.2% and 4.6% (CFe(III) = CFe(II) = 10 μg l−1, n = 7) for Fe(III) and total iron were found, respectively. The method was successfully applied to the determination of trace Fe(II) and Fe(III) in environmental water samples (East Lake water, local tap water and mineral water). In order to validate the method, the developed method was applied to the determination of total iron in certified materials of NIES NO.10-b rice flour and GBW07605 tea leaves, and the results obtained were in good agreement with the certified values.  相似文献   

2.
Pons C  Forteza R  Cerdà V 《Talanta》2005,66(1):210-217
A combination of multi-syringe flow-injection analysis (MSFIA) technique with an optical fibre reflectance sensor for the determination of iron in water samples has been developed in this work. Anion-exchange solid phase extraction (SPE) disks have been used as solid phase. Ammonium thiocyanate has been chosen as chromogenic reagent for Fe(III). The complex Fe[SCN]63− is retained onto the SPE disk and spectrophotometrically detected at 480 nm. The complex is eluted with 0.25 mol l−1 hydrochloric acid in 75% ethanol. Total iron can be determined by oxidising Fe(II) to Fe(III) with hydrogen peroxide.A mass calibration was run within the range of 0.4-37.5 ng. The detection limit (3sb/S) was 0.4 ng. The repeatability (RSD), calculated from 9 replicates using 0.5 ml injections of a 25 μg l−1 concentration, was 3.6%. The repeatability between five anion-exchange disks was 5.4%. An injection throughput of 7 injections per hour for a sampling volume of 1 ml has been achieved.The applicability of the proposed methodology in natural water samples has been proved.The properties of anion-exchange and chelating SPE disks have been studied and compared.  相似文献   

3.
《Analytica chimica acta》2002,471(2):173-186
An automated and versatile sequential injection spectrofluorimetric procedure for the simultaneous determination of multicomponent mixtures in micellar medium without prior separation processes is reported. The methodology is based upon the segmentation of a sample slug between two different buffer zones in order to attain both an improvement of sensitivity and residual minimization for the whole species. Resolution of overlapping fluorescence profiles is achieved using a variable angle scanning technique coupled to multivariate least-squares regression (MLR) algorithms at both sample edges.The potentialities of the described methodology are illustrated with the spectrofluorimetric determination of four widespread pesticides with different acid-base properties; viz. carbaryl (CBL) (1-naphthyl-N-methylcarbamate), fuberidazole (FBZ) (2-(2′-furyl)benzimidazole), thiabendazole (TBZ) (2-(4′-thiazolyl)benzimidazole) and warfarin (W) (3-α-acetonylbenzyl)-4-hydroxycoumarin). Detection limits at the 3σ level were 3.9, 0.02, 0.03 and 10 μg l−1 for CBL, FBZ, TBZ and W, respectively at the maximum sensitivity pH. Dynamic ranges of 13-720 μg l−1 CBL, 0.10-14 μg l−1 FBZ, 0.19-60 μg l−1 TBZ and 0.05-5 mg l−1 W were achieved. Relative standard deviations (n=10) were 0.2% for 100 μg l−1 CBL and 2.4 μg l−1 FBZ, 0.7% for 8 μg l−1 TBZ and 1.0% for 1 mg l−1 W. The proposed automated methodology, which handles 17 samples/h, was validated and applied to spiked real water samples with very satisfactory results.  相似文献   

4.
Lunvongsa S  Oshima M  Motomizu S 《Talanta》2006,68(3):969-973
A flow injection spectrophotometric method has been developed for the determination of dissolved and total amounts of iron in tap and natural water samples. The method for the determination of iron employs a sample acidification step in order to decompose iron hydroxide and iron-complexes into free iron, Fe(III) and Fe(II). The amounts of free iron were detected using a catalytic action of Fe(III) and Fe(II) on the oxidation of N,N-dimethyl-p-phenylenediamine in the presence of hydrogen peroxide. Increase in absorbance of oxidized product was detected spectrophotometrically at 514 nm. The proposed method allows 0.02 and 0.06 μg l−1 of LOD and LOQ, respectively, with relative standard deviation (RSD) below 2%. The accuracy and the precision of the method were evaluated by the analysis of the standard reference material, river water. The developed method was successfully applied to real water samples.  相似文献   

5.
The development of a highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with alternated layers of iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) and cobalt(II) tetrasulfonated phthalocyanine (CoTSPc) is described. The modified electrode showed an excellent catalytic activity and stability for the nitrite oxidation decreasing the peak potentials about 200 mV toward less positive values and presenting much higher peak currents than those obtained on the bare GC electrode. A linear response range of 0.2-8.6 μmol l−1, with a sensitivity of 0.37 μA l μmol−1 and detection limit of 0.04 μmol l−1 were obtained with this sensor. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was verified to be 1.4% for 10 measurements of 0.2 μmol l−1 nitrite solution. Interference caused by common ions has been investigated in simulated mixtures containing high concentration level of interfering ions and the sensor was found to be tolerant against these ions. The developed sensor was applied for the nitrite determination in water samples and the results were in agreement with those obtained by a comparative method described in the literature. The average recovery for these samples was 100.1 (±0.7)%.  相似文献   

6.
Ferrer L  de Armas G  Miró M  Estela JM  Cerdà V 《Talanta》2005,68(2):343-350
An automatic multisyringe flow injection analysis (MSFIA) system coupling a flow-through optical fiber diffuse reflectance sensor with in-line gas-diffusion (GD) separation is proposed for the isolation, preconcentration and determination of traces of volatile and gas-evolving compounds in samples containing suspended solids, with no need for any preliminary batch sample treatment. The flowing methodology overcomes the lost of sensitivity of the in-line separation technique, when performed in a uni-directional continuous-flow mode, through the implementation of disk-based solid-phase extraction schemes. The high selectivity and sensitivity, the low reagent consumption and the miniaturization of the whole assembly are the outstanding features of the automated set-up. The proposed combination of techniques for separation, flow analysis, preconcentration and detection was applied satisfactorily to sulfide determination in environmental complex matrixes. The method based on multicommutation flow analysis involves the stripping of the analyte as hydrogen sulfide from the donor channel of the GD-module into an alkaline receiver segment, whereupon the enriched plug merges with well-defined zones of the chormogenic reagents (viz., N,N-dimethyl-p-phenylenediamine (DMPD) and Fe(III)). The in-line generated methylene blue dye is subsequently delivered downstream to the dedicated optrode cell furnished with a C18 disk, while recording continuously the diffuse reflectance spectrum of the pre-concentrated compound. This procedure provides a linear working range of 20-500 μg l−1 sulfide with a relative standard deviation of 2.2% (n = 10) at the 200 μg l−1 level, and a detection limit of 1.3 μg l−1.  相似文献   

7.
The use of a permeation liquid membrane system for the preconcentration and separation of nickel in natural and sea waters and subsequent determination by atomic absorption spectroscopy is presented. 2-Hydroxybenzaldehyde N-ethylthiosemi-carbazone (2-HBET) in toluene is used as the active component of the liquid membrane. A study strategy based on a simplex design has been followed. Several chemical and physical parameters were optimized. Maximum permeation coefficient was obtained at a feed solution pH of 9.4, 0.3 mol l−1 of HNO3 in the stripping solution and 1.66 mmol l−1 of 2-HBTE in toluene as carrier. The precision of the method was 4.7% at 95% significance level and a detection limit of 0.012 μg l−1 of nickel was achieved. The preconcentration procedure showed a linear response within the studied concentration range from 3 to 500 μg l−1 of Ni in the feed solution. The method was validated with different spiked synthetic seawater and certified reference water samples: TMDA-62 and LGC 6016, without matrix interferences and showing good concordance with the certified values, being the relative errors −5.9% and −2.2%, respectively. Under optimal conditions, the average preconcentration yield for real seawater samples was 98 ± 5%, with a nickel preconcentration factor of 20.83 and metal concentrations ranging between 2.8 and 5.4 μg l−1.  相似文献   

8.
A flow injection analysis (FIA) method using on-line separation and preconcentration with a novel metal scavenger beads, QuadraSil™ TA, has been developed for the ICP-OES determination of traces of palladium. QuadraSil TA contains diethylenetriamine as a functional group on spherical silica beads and shows the highest selectivity for Pd(II) at pH 1 (0.1 mol l−1 hydrochloric acid) solution. An aliquot of the sample solution prepared as 0.1 mol l−1 in hydrochloric acid was passed through the QuadraSil TA column. After washing the column with the carrier solution, the Pd(II) retained on the column was eluted with 0.05 mol l−1 thiourea solution and the eluate was directly introduced into an ICP-OES. The proposed method was successfully applied to the determination of traces of palladium in JSd-2 stream sediment certified reference material [0.019 ± 0.001 μg g−1 (n = 3); provisional value: 0.0212 μg g−1] and SRM 2556 used auto catalyst certified reference material [315 ± 4 μg g−1 (n = 4); certified value: 326 μg g−1]. The detection limit (3σ) of 0.28 ng ml−1 was obtained for 5 ml of sample solution. The sample throughputs for 5 ml and 100 μl of the sample solutions were 10 and 15 h−1, respectively.  相似文献   

9.
A method for speciation, preconcentration and separation of Fe(II) and Fe(III) in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. 4-Acetyl-5-methyl-1-phenyl-1H-pyrazole-3-carboxylic acid (AMPC) was used as a new complexing reagent for Fe(III). The Fe(III)-AMPC complex was extracted into methyl isobutyl ketone (MIBK) phase in the pH range 1.0-2.5, and Fe(II) ion remained in aqueous phase at all pH. The chemical composition of the Fe(III)-AMPC complex was determined by the Job's method. The optimum conditions for quantitative recovery of Fe(III) were determined as pH 1.5, shaking time of 2 min, 1.64 × 10−4 mol L−1 AMPC reagent and 10 mL of MIBK. Furthermore, the influences of diverse metal ions were investigated. The level of Fe(II) was calculated by difference of total iron and Fe(III) concentrations. The detection limit based on the 3σ criterion was found to be 0.24 μg L−1 for Fe(III). The recoveries were higher than 95% and relative standard deviation was less than 2.1% (N = 8). The validation of the procedure was performed by the analysis of two certified standard reference materials. The presented method was applied to the determination of Fe(II) and Fe(III) in tap water, lake water, river water, sea water, fruit juice, cola, and molasses samples with satisfactory results.  相似文献   

10.
A chitosan resin derivatized with N-methyl-d-glucamine (CCTS-NMDG) was synthesized by using a cross-linked chitosan (CCTS) as base material. The N-methyl-d-glucamine (NMDG) moiety was attached to the amino group of CCTS through the arm of chloromethyloxirane. The adsorption behavior of 59 elements on the synthesized resin was systematically examined by using the resin packed in a mini-column, passing water samples through it and measuring the adsorbed elements in eluates by ICP-MS. The CCTS-NMDG resin shows high ability in boron sorption with the capacity of 0.61 mmol ml−1 (= 2.1 mmol g−1). The sorption kinetics of this resin was faster than that of the commercially available resins. Other advantages of the synthesized resin are: (1) quantitative collection of boron at neutral pH regions; (2) complete removal of large amounts of matrices; (3) no loss of efficiency over prolonged usage; (4) effective collection of boron in wide range concentration using a mini column containing 1 ml resin; (5) complete elution of boron with 1 mol l−1 nitric acid. The resin was applied to the collection/concentration of boron in water samples. Boron in tap water and river water was found to be in the range of 6-8 μg l−1. The limit of detection (LOD) of boron after pretreatment with CCTS-NMDG resin and measurement by ICP-MS was 0.07 μg l−1 and the limit of quantification (LOQ) was 0.14 μg l−1 when the volume of each sample and eluent was 10 ml.  相似文献   

11.
It has been developed a fully mechanized procedure for the spectrophotometric determination of anionic surfactants in water expressed in terms of SDS concentration. The reference method, based on the reaction of SDS with methylene blue (MB) followed by extraction in chloroform, was mechanized in order to reduce the consumption of organic solvents. The system was based on the multicommutation approach and provided a 35 times reduction of the waste production without sacrificing the figures of merit of the method in terms of sensitivity and repeatability, for a dynamic linear range from 0.2 to 1.7 mg l−1. Results obtained for washing water samples were comparable with those obtained using the reference method and no significant differences, at 95% confidence level, were observed. Other useful characteristics are a solvent consumption of 0.7 ml per determination, a sampling throughput of 40 determinations per hour, a relative standard deviation of 5.9% (n = 10) for a sample containing 2 × 10−6 mol l−1 (576 μg l−1) surfactant and a limit of detection of 6.1 × 10−9 mol l−1 (1.7 μg l−1).  相似文献   

12.
An analytical procedure for determination of As(III) and As(V) in soils using sequential extraction combined with flow injection (FI) hydride generation atomic fluorescence spectrometry (HG-AFS) was presented. The soils were sequentially extracted by water, 0.6 mol l−1 KH2PO4 solution, 1% (v/v) HCl solution and 1% (w/v) NaOH solution. The arsenite (As(III)) in extract was analyzed by HG-AFS in the medium of 0.1 mol l−1 citric acid solution, then the total arsenic in extract was determined by HG-AFS using on-line reduction of arsenate with l-cysteine. The concentration of arsenate (As(V)) was calculated by the difference. The optimum conditions of extraction and determination were studied in detail. The detection limit (3σ) for As(III) and As(V) were 0.11 and 0.07 μg l−1, respectively. The relative standard deviation (R.S.D.) was 1.43% (n=11) at the 10 μg l−1 As level. The method was applied in the determination of As(III) and As(V) of real soils and the recoveries of As(III) and As(V) were in the range of 89.3-118 and 80.4-111%, respectively.  相似文献   

13.
A.S. Alves Ferreira 《Talanta》2007,72(3):1223-1229
This paper deals on the determination of Strychnine, a potent and dangerous pesticide and the analytical procedure is based on the photo-induced chemiluminescence of the pesticide by means of the Multicommutation continuous-flow methodology. Small segments of the pesticide solution were sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. The required time of UV irradiation was obtained by stopped-flow during 150 s; then, the resulting solution formed alternated segments with the oxidizing solution containing 5 × 10−3 mol l−1 Ce(IV) in 0.6 mol l−1 nitric acid. The calibration range, from 2 μg l−1 to 50 mg l−1, resulted in a linear behaviour over the range 25 μg l−1 to 20 mg l−1 and fitting the equation: I = 4706x + 624 with a correlation coefficient of 0.9955. The limit of detection was 2 μg l−1 and the sample throughput 15 h−1. After testing the influence of a large series of potential interferents, the method was applied to different kinds of samples.  相似文献   

14.
Enass M. Ghoneim 《Talanta》2010,82(2):646-652
A simple and precise square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV) method has been described for simultaneous determination of Mn(II), Cu(II) and Fe(III) in water samples using a carbon paste electrode. In 0.1 mol L−1 acetate buffer (pH 5) containing 50 μmol L−1 of 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol (5-Br-PADAP), Mn(II), Cu(II) and Fe(III) were simultaneously determined as metal-complexes with 5-Br-PADAP following preconcentration onto the carbon paste electrode by adsorptive accumulation at +1.0 V (vs. Ag/AgCl/3 M KCl). Insignificant interference from various cations (K+, Na+, Mg2+, Ca2+, Al3+, Bi3+, Sb3+, Se4+, Zn2+, Ni2+, Co2+, Cd2+, Pb2+, V5+, Ti4+ and NH4+), anions (HCO3, Cl, NO3−, SO42− and PO43−) and ascorbic acid was noticed. Limits of detection of 0.066, 0.108 and 0.093 μg L−1 and limits of quantitation of 0.22, 0.36 and 0.31 μg L−1 Mn(II), Cu(II) and Fe(III), respectively, were achieved by the described method. The described stripping voltammetry method was successfully applied for simultaneous determination of Mn(II), Cu(II) and Fe(III) in ground, tap and bottled natural water samples.  相似文献   

15.
The present work reports the development of a methodology for the direct determination of lead in high saline waters derived from petroleum exploration employing electrothermal atomic absorption spectrometry with permanent Ir-W and HF as modifiers. These waters, so-called produced waters, have complex composition containing several types of organic and inorganic substances. In order to attain best conditions (highest analytical signal besides lowest background) for the methodology studies about the effect of several variables and the convenient calibration strategy were performed. Also, the efficiency of other modification approaches was evaluated. At best conditions, pyrolysis and atomization temperature were 800 and 2200 °C, respectively, when the modifiers cited above were utilized. Obtained results indicate that, in this kind of sample, lead can be determined by standard addition method or employing external calibration with standard solutions prepared in 0.8 mol l−1 NaCl medium. In order to evaluate the accuracy of the procedure, a recovery test was performed with six spiked samples of produced waters. The detection limit, quantification limit and the relative standard deviation in 0.8 mol l−1 NaCl were also calculated and the values are 1.5 μg l−1, 5.0 μg l−1 and 5.0% (at 10 μg l−1 level), respectively.  相似文献   

16.
A multivariate modelling procedure using a second order composite design showed that the adsorptive stripping voltammetry (AdSV) technique used for molybdenum determination in a N,N-dimethylformamide (DMF)-ethanol-water homogeneous ternary solvent system (HTSS) using α-benzoinoxime (αBO) as the complexing agent and a sodium acetate-acetic acid buffer as the supporting electrolyte is much more tolerant to the presence of phosphorous (as phosphate) and iron than it could be presumed. Instead of the concentration ratios of P/Mo=100 and Fe/Mo=500, determined by univariate experiments, these values were respectively raised to 97,500 and 4200 when the phosphate and Fe(III) levels are varied simultaneously from 0.625 to 2.500 and from 0.006 to 0.150 mg l−1, respectively, in the voltammetric cell, keeping the molybdenum concentration constant at 3.00 μg l−1. This allowed us to propose a straightforward AdSV-HTSS procedure for the determination of Mo(VI) in plants. The AdSV results compared favourably with those obtained by using graphite furnace atomic absorption spectrometry (GFAAS) and with the results of samples from the International Plant-Analytical Exchange (IPE) programme of Wageningen University (The Netherlands).  相似文献   

17.
The present paper is dealing with an analytical strategy based on coupling photodegradation, chemiluminescence and multicommutation continuous-flow methodology for the determination of the pesticide Propanil, a common herbicide. The pesticide solution is inserted as small segments sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. Both flow-rates (sample and medium) are adjusted to required time for photodegradation, 2.0 min; and then, the resulting solution is also sequentially inserted as segments alternated with segments of the oxidizing solutions system, 1.00 × 10−4 mol l−1 potassium permanganate in 2.00 mol l−1 sulphuric acid medium. The calibration range, from 10 μg l−1 to 25 mg l−1, resulted in a linear behaviour over the range 10 μg l−1-5 mg l−1 and fitting the linear equation: I = 780.30C + 95.28; correlation coefficient 0.9999. The limit of detection was 8 μg l−1 and the sample throughput 20 h−1. After testing the influence of a large series of potential interferents the method is applied to water samples obtained from different places and to one formulation. The method is valid for the determination of other pesticides from the same chemical family, namely: alachlor, flumetsulam, furalaxyl and ofurace. Calibration graphs, limits of detection, repeatability and determination in water samples are obtained for each reported pesticide.  相似文献   

18.
Two methods of the determination of cobalt and chromium in human urine of non-occupationally exposed populations—highly sensitive catalytic adsorptive stripping voltammetry (CAdSV) and electrothermal atomic absorption spectrometry (ET-AAS)—are evaluated and compared. The CAdSV methods are based on adsorptive accumulation of a cobalt-nioxime (1,2-cyclohexanedione dioxime) or a chromium-DTPA (diethylenetriammine-N,N,N′,N″,N″-pentaacetic acid) complexes on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the catalytic reduction current of the adsorbed complex in the presence of sodium nitrite in case of cobalt or in the presence of sodium nitrate in case of chromium determination. In the CAdSV procedure UV-photolysis was used for the sample pre-treatment; the ET-AAS determination did not require any separate preliminary decomposition of the analyte urine samples. The accuracy of the procedures was checked by the analysis of commercially available quality control urine samples. The detection limits (3σ) were 0.13 μg l−1 for Co and 0.18 μg l−1 for Cr in ET-AAS determination and 0.007 μg l−1 for Co and 0.002 μg l−1 for Cr in CAdSV measurements. Precision (R.S.D.) was less than 5% for both methods. The study has shown that the CAdSV is a more reliable and sensitive technique for the determination of very low cobalt and chromium contents in urine, the detection of which is not possible when using the AAS technique.  相似文献   

19.
In this paper, an automatic method for the screening of water samples containing Cu(II) was proposed, based on peryoxalate chemiluminescence reaction using coproporphyrin I as fluorophor compound to provide selectivity and a simple flow injection (FI) chemiluminescence detector (CLD). FI system conditions were chosen in order to distinguish samples over or under legislation limit established (50 μg l−1) with high reliability. The detection limit found was 9 μg l−1 and the linear dynamic range was 15-125 μg l−1 of Cu(II). Repeatibility and reproducibility studies gave good precision and accuracy with recovery near 100%. Under these conditions, the method resulted selective and only Fe(II), Fe(III) and Pb(II) could interfere, but at a concentration level higher than their normal concentration in waters. The proposed method was found to be highly reliable for screening purposes and it was successfully applied to the screening of a variety of real water samples.  相似文献   

20.
Themelis DG  Kika FS  Economou A 《Talanta》2006,69(3):615-620
A new rapid and sensitive FI assay is reported for the simultaneous direct spectrophotometric determination of trace Cr(VI) and Cr(III) in real samples. The method is based upon the reaction of Cr(VI) with chromotropic acid (CA) in highly acidic medium to form a water-soluble complex (λmax = 370 nm). Cr(III) reacts with CA only after its on-line oxidation to Cr(VI) by alkaline KIO4. The determination of each chromium species in the sample was achieved by absorbance differences. The calibration curves were linear over the range 3-4000 μg l−1 and 30-1200 μg l−1 for Cr(VI) and Cr(III), respectively, while the precision close to the quantitation limit was satisfactory in both cases (sr = 3.0% for Cr(VI) and 4.0% for Cr(III) (n = 10) at 10 and 50 μg l−1 level, respectively). The method developed proved to be adequately selective and sensitive (cL = 1 and 10 μg l−1 for Cr(VI) and Cr(III), respectively). The application of the method to the analysis of water samples (tap and mineral water) gave accurate results based on recovery studies (93-106%). Analytical results of real sample analysis were in good agreement with certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号