首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bendl RF  Madden JT  Regan AL  Fitzgerald N 《Talanta》2006,68(4):1366-1370
A method for the determination of mercury via UV photoreduction has been investigated. Mercury vapor was generated by the reduction of mercury species in an acetic acid solution using UV radiation. Detection of the volatile mercury was accomplished by atomic absorption spectrometry. An optimized system was found to provide a detection limit (defined as the concentration giving a signal equal to three times the standard deviation of the blank) of 2.1 μg L−1 with a precision of 2.9% relative standard deviation (n = 8) for a 500 μg L−1 mercury standard. The effect of various metal ions on the mercury signal was investigated and the method validated with a NRCC certified dogfish liver material (DOLT-3) using the method of standard additions. A reaction pathway is hypothesized for UV photoreduction.  相似文献   

2.
This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92–98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).  相似文献   

3.
Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 µg L− 1 (compared to 2.1 µg L− 1 for a previously reported system in the absence of trapping) with a precision of 11% for a 10 µg L− 1 mercury standard (RSD, N = 5).  相似文献   

4.
We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C9H9HgNaO2S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH4 solution, and AFS detection in an Ar/H2 miniaturized flame. The method was linear in the 0.01–2 μg mL−1 range, with a LOD of 0.003 μg mL−1. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL−1.  相似文献   

5.
A simple, sensitive and selective method for the simultaneous determination of nitrite and nitrate in water samples has been developed. The method is based on ion-exchange separation, online photochemical reaction, and luminol chemiluminescence detection. The separation of nitrite and nitrate was achieved using an anion-exchange column with a 20 mM borate buffer (pH 10.0). After the separation, these ions were converted to peroxynitrite by online UV irradiation using a low-pressure mercury lamp and then mixed with a luminol solution prepared with carbonate buffer (pH 10.0). The calibration graphs of the nitrite and nitrate were linear in the range from 2.0 × 10−9 to 2.5 × 10−6 M and 2.0 × 10−8 to 2.5 × 10−5 M, respectively. Since the sensitivity of nitrite was about 10 times higher than that of nitrate, the simultaneous determination of nitrite and nitrate in the water samples could be efficiently achieved. This method was successfully applied to various water samples – river water, pond water, rain water, commercial mineral water, and tap water – with only filtration and dilution steps.  相似文献   

6.
A highly selective β-cyclodextrin polymer solid-phase spectrophotometric (β-CDPSPS) method is described for the determination of total mercury(II) sub microgram per liter. The methods are based on the chromogenic reaction of mercury(II) with 1,3-di-(4-nitrodiazoamino)-benzene (DNAAB) loaded on β-cyclodextrin polymer (β-CDP). In pH 10.0 borax buffer, Hg(II)-DNAAB complex on β-CDP gives a positive peak at 445 nm and a negative one at 545 nm. The absorbance was measured at two peaks and the net absorbance (As) was calculated between the difference of positive and negative peaks. The apparent molar absorptivity is 1.1 × 107 l mol−1 cm−1 (82-fold of it in solution) for 100 ml sample and the linear range of the determination is 0.062-250 μg l−1. The selectivity for coexistent ions was greatly improved, only silver(I) interfered with the mercury determination and the amount of the others was reduced 25-1000 times compared to previous solution method. The interference caused by silver(I) can be eliminated using tri-n-octylmethylammonium bromide as masking agent. The detection limit and the quantification limit were found to be 0.024 and 0.062 μg l−1, respectively. The relative standard deviation of ten replicate determinations of 5.0 μg mercury(II) in 100 ml sample was of 2.4%. The method was validated by analyzing the water and soil reference materials and successfully applied to the determination of mercury(II) in locally collected water and dust samples.  相似文献   

7.
A simple and sensitive kinetic method for the determination of traces of mercury (70-760 ng ml−1) based on its inhibitory effect on the addition reaction between methyl green and sulfite ion is proposed. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of methyl green at 596 nm between 2 and 4 min using a fixed time method. Artificial neural networks with back propagation algorithm coupled with an orthogonal array design were applied to the modeling of the proposed kinetic system and optimization of experimental conditions. An orthogonal design was utilized to design the experimental protocol, in which pH, concentration of sulfite, temperature, and concentration of methyl green were varied simultaneously. Optimum experimental conditions in term of sensitivity were generated by using ANNs. The rate of decrease in absorbance is inversely proportional to the concentration of Hg(II) over entire concentration range tested (100-550 ng ml−1) with a detection limit of 45 ng ml−1 and a relative standard deviation at 200-400 ng ml−1 Hg(II) of 3.2% (n=5). A simple preconcentration step improved the limit of detection and linear dynamic range of the method to about 8 and 12-760 ng ml−1, respectively, by about 10 times enrichment of mercury between 12 and 75 ng ml−1. The method was based on enrichment of Hg(II) from dilute samples on an anionic ion exchanger fixed on a plastic strip and was applied to the determination of Hg(II) in environmental samples with satisfactory results.  相似文献   

8.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

9.
The cloud point extraction (CPE) preconcentration of ultra-trace amount of mercury species prior to reverse-phase high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection was studied. Mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were transformed into hydrophobic chelates by reaction with sodium diethyldithiocarbamate, and the hydrophobic chelates were extracted into a surfactant-rich phase of Triton X-114 upon heating in a water bath at 40 °C. Ethylmercury was found partially decomposed during the CPE process, and was not included in the developed method. Various experimental conditions affecting the CPE preconcentration, HPLC separation, and ICP-MS determination were optimized. Under the optimized conditions, detection limits of 13, 8 and 6 ng l−1 (as Hg) were achieved for MeHg+, PhHg+ and Hg2+, respectively. Seven determinations of a standard solution containing the three mercury species each at 0.5 ng ml−1 level produced relative standard deviations of 5.3, 2.3 and 4.4% for MeHg+, PhHg+ and Hg2+, respectively. The developed method was successfully applied for the determination of the three mercury species in environmental water samples and biological samples of human hair and ocean fish.  相似文献   

10.
Liwei Liu  Li Wu  Xiandeng Hou 《Talanta》2010,80(3):1239-4203
UV-induced carbonyl generation with formic acid is used for gaseous sample introduction into an atomic fluorescence spectrometer for the determination of ultra-trace nickel. Compared with conventional carbonyl generation, no toxic gas CO is involved in this work, and volatile Ni(CO)4 is generated with a single reagent formic acid under the irradiation of UV light (253.7 nm, 15 W). The reaction conditions, including reaction medium, UV irradiation time and reaction temperature, are optimized for the best signal. Under the optimized conditions, a limit of detection of 10 ng L−1 for nickel is obtained without any analyte-pre-concentration, which is comparable to that using in situ trapping technique. Interferences from common transition metal ions, noble metal ions and mineral acids are also investigated. The proposed method is applied to the analysis of three certified reference materials and two organic acid samples for trace nickel, with analytical results in good agreement with certified values or those obtained by electrothermal atomic absorption spectrometry. This is a simple, fairly green and highly sensitive method for ultra-trace nickel determination.  相似文献   

11.
《Analytica chimica acta》2004,512(1):149-156
A sensitive and fully automated method for determination of aldicarb in technical formulations (Temik) and mineral waters is proposed. The automation of the flow-assembly is based on the multicommutation approach, which uses a set of solenoid valves acting as independent switchers. The operating cycle for obtaining a typical analytical transient signal can be easily programmed by means of a home-made software running in the Windows environment. The manifold is provided with a photoreactor consisting of a 150 cm long × 0.8 mm i.d. piece of PTFE tubing coiled around a 20 W low-pressure mercury lamp. The determination of aldicarb is performed on the basis of the iron(III) catalytic mineralization of the pesticide by UV irradiation (150 s), and the chemiluminescent (CL) behavior of the photodegradated pesticide in presence of potassium permanganate and quinine sulphate as sensitizer. UV irradiation of aldicarb turns the very week chemiluminescent pesticide into a strongly chemiluminescent photoproduct. The method is linear over the range 2.2-100.0 μg l−1 of aldicarb; the limit of detection is 0.069 μg l−1; the reproducibility (as the R.S.D. of 20 peaks of a 24 μg l−1 solution) is 3.7% and the sample throughput is 17 h−1.  相似文献   

12.
A high-pressure microwave digestion was applied for microwave-assisted extraction (MAE) of mercury species from sediments and zoobenthos samples. A mixture containing 3 mol L−1 HCl, 50% aqueous methanol and 0.2 mol L−1 citric acid (for masking co-extracted Fe3+) was selected as the most suitable extraction agent. The efficiency of proposed extraction method was better than 95% with R.S.D. below 6%. A preconcentration method utilizing a “homemade” C18 solid phase extraction (SPE) microcolumns was developed to enhance sensitivity of the mercury species determination using on-column complex formation of mercury-2-mercaptophenol complexes. Methanol was chosen for counter-current elution of the retained mercury complexes achieving a preconcentration factor as much as 1000. The preconcentration method was applied for the speciation analysis of mercury in river water samples. The high-performance liquid chromatography-cold vapour atomic fluorescence spectrometric (HPLC/CV-AFS) method was used for the speciation analysis of mercury. The complete separation of four mercury species was achieved by an isocratic elution of aqueous methanol (65%/35%) on a Zorbax SB-C18 column (4.6 mm × 150 mm, 5 μm) using the same complexation reagent (2-mercaptophenol). The limits of detection were 4.3 μg L−1 for methylmercury (MeHg+), 1.4 μg L−1 for ethylmercury (EtHg+), 0.8 μg L−1 for inorganic mercury (Hg2+), 0.8 μg L−1 for phenylmercury (PhHg+).  相似文献   

13.
Based on TiO2-nanoparticles coating fabricated by a one-step anodization method on titanium wire substrate, a novel phenyl functionalized solid-phase microextraction (SPME) fiber coating was prepared by simple and rapid in situ chemical assembling technique between the fiber surface titanol groups and trichlorophenylsilane reaction. The as-fabricated fiber exhibited good extraction capability for some UV filters and was employed to determine the ultraviolet (UV) filters in combination with high performance liquid chromatography–UV detection (HPLC–UV). The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the developed method was applied to detect several UV filters at trace concentration levels with only 8 mL of sample volume. They were determined in the range from 0.005 to 25 μg L−1 with detection limits (S/N = 3) from 0.1 to 50 ng L−1. The relative standard deviations (RSDs) for single fiber repeatability varied from 4.6 to 6.5% (n = 5) and fiber-to-fiber reproducibility (n = 5) ranged from 5.5 to 9.1%. The linear ranges spanned two-four magnitudes with correlation coefficients above 0.9990. Five real water samples including four Yellow River water samples and one rain water sample were determined sensitively with good recoveries ranging from 86.2 to 105.5%. The functionalized fiber coating performed good reproducible manner, high mechanical strength, good stability and long service life. Moreover, this study proposed an efficient sample pretreatment method for the determination of UV filters from environmental water samples.  相似文献   

14.
An electrochemical cold vapor generation system with polyaniline modified graphite electrode as cathode material was developed for Hg (II) determination by coupling with atomic fluorescence spectrometry. This electrochemical cold vapor generation system with polyaniline/graphite electrode exhibited higher sensitivity; excellent stability and lower memory effect compared with graphite electrode electrochemical cold vapor generation system. The relative standard deviation was 2.7% for eleven consecutive measurements of 2 ng mL− 1 Hg (II) standard solution and the mercury limit of detection for the sample blank solution was 1.3 рg mL− 1 (3σ). The accuracy of the method was evaluated through analysis of the reference materials GBW09101 (Human hair) and GBW 08517 (Laminaria Japonica Aresch) and the proposed method was successfully applied to the analysis of human hairs.  相似文献   

15.
Mercury-pyrrolidinedithiocarbamate complexes are first time used for speciation of aquatic mercury with high-performance liquid chromatographic/ion trap-mass spectrometric method utilizing atmospheric pressure chemical ionization (APCI). The separation of the four mercury species was achieved in less than 5 min with a linear gradient profile of aqueous methanol from 70 up to 100% (v/v) in 4th min, isocratic elution at 100% up to 5th min and followed by a negative gradient to 70% in 6th min. The best separation was achieved on a reverse phase Zorbax Eclipse XDB C18 column (50 mm × 2.1 mm i.d., 1.8 μm particle size). The on-column limits of detection (injection volume 1 μL) were 370 pg for methylmercury (MeHg+), 280 pg for ethylmercury (EtHg+), 250 pg for phenylmercury (PhHg+) and 90 pg for inorganic mercury (Hg2+) when the data were collected in selective ion monitoring (SIM) mode. A method of isolation and preconcentration of the mercury species using a “home-made” C18 solid phase extraction (SPE) microcolumns was developed to enhance sensitivity of the method. The preconcentration factor as much as 2500 was achieved with on-column complex formation of mercury-pyrrolidinedithiocarbamate. Methanol (100%) was chosen for elution of preconcentrated mercury species. The method was applied for the determination of mercury species in river water samples.  相似文献   

16.
A selective and sensitive amperometric method of analysis has been developed for determination of the trace amounts of mercury in waters at a platinum electrode based on the effect of the presence of mercury ions on the current due to oxidation of l-tyrosine. A decrease of signal was observed due to the formation of a complex of tyrosine with the Hg(II) ion adsorbed on the electrode surface. Several parameters were varied, such as applied potential, pH and concentration of tyrosine. The calibration plot was linear in the range from 0.02 to 3 μmol l−1 Hg(II) with r=0.997 and the detection limit (3σ) was 0.014 μmol l−1; the relative standard deviation was 2.2%. The study of interferences from other metal ions revealed a good selectivity of this method towards mercury(II). The stoichiometry of the mercury-tyrosine complex was determined to be 1:2 and the formation constant 627±19. Formation of complexes with mercury ions was also demonstrated with several catechol compounds and other amino acids. The method was applied to the analysis of contaminated waters.  相似文献   

17.
In this paper, a novel detection reagent for formaldehyde determination is proposed, and is applied to a simple and highly sensitive flow injection method for the spectrophotometric determination of formaldehyde. The method is based on the reaction of formaldehyde with methyl acetoacetate in the presence of ammonia. The increase in the absorbance of the reaction product was measured at 375 nm. An inexpensive light emitting diode (LED)-based UV detector (375 nm) was, for the first time, used. Under the optimized experimental conditions, formaldehyde in an aqueous solution was determined over the concentration range from 0.25 to 20.0 × 10−6 M with a liner calibration graph; the limit of detection (LOD) of 5 × 10−8 M (1.5 μg L−1) was possible. The relative standard deviation of 12 replicate measurements of 5 × 10−6 M formaldehyde was 1.2%. Maximum sampling throughput was about 21 samples/h. The effect of potential interferences such as metals, organic compounds and other aldehyde was also examined. The analytical performance for formaldehyde determination was compared with those obtained by the conventional acetylacetone method, which uses visible absorption spectrophotometry. Finally, the proposed method was successfully applied to the determination of formaldehyde in natural water samples.  相似文献   

18.
Jiang H  Hu B  Jiang Z  Qin Y 《Talanta》2006,70(1):7-13
A new method using a microcolumn packed with YPA4 chelating resin as solid-phase extractor has been developed for the separation and preconcentration of trace Hg prior to its measurement by GFAAS with Pd as a permanent modifier. Various parameters such as the amount of the modifier, pH, sample flow rate, the concentration and volume of eluent have been studied in order to find the best conditions for the determination of mercury. The detection limit of the method (3σ) for Hg based on an enrichment factor of 100 was 0.2 ng ml−1. A characteristic mass of 114 pg was obtained for mercury using Pd as a permanent modifier. The relative standard deviation was 2.8% at the 10 ng ml−1 level (n = 5). The method has been applied to the determination of trace mercury in environmental water samples and the recoveries for the spiked samples are in the range of 91-105%.  相似文献   

19.
Ni Y  Qiu P  Kokot S 《Talanta》2004,63(3):561-565
Voltammetric behaviour of maleic hydrazide pesticide dissolved in a Britton-Robertson buffer was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the process at the Hg electrode was diffusion controlled; the reaction was irreversible and involved a change of one proton and a transfer of one electron. A quantitative differential pulse voltammetric method for determination of maleic hydrazide was developed on the basis of these studies involving the reduction of the compound at a hanging mercury drop electrode. A linear calibration was obtained in the range of 0.5-5.5 mg l−1, and the developed DPV methodology was then applied for the determination of maleic hydrazide in spiked vegetable samples by the standard addition method. Satisfactory percentage R.S.D. (∼2%), percentage recovery values (∼85%) and LOD (0.215 mg l−1) were obtained. These compared well with the results from the alternative spectrophotometric method.  相似文献   

20.
In this work, a new 2-(2-oxoethyl)hydrazine carbothioamide modified silica gel (SG-OHC) sorbent was prepared and applied for preconcentration of trace mercury(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimization of some analytical parameters affecting the adsorption of the analyte such as acidity, shaking time, sample flow rate and volume, eluent condition, and interfering substances were investigated. At pH 3, the maximum static adsorption capacity of Hg(II) onto the SG-OHC was 37.5 mg g−1. The quantitative recovery (>95%) of Hg(II) could be obtained using 2 mL of 0.5 mol L−1 HCl and 1% CS(NH2)2 solution as eluent. Common coexisting substances did not interfere with the separation of mercury(II) under optimal conditions. The detection limit of present method was 0.10 ng mL−1, and the relative standard deviation (RSD) was lower than 4.0% (n = 8). The prepared sorbent was successfully applied for the preconcentration of trace Hg(II) in certified and water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号