共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Y Wu HL Xia AL Zhu SH Han QJ Yu RQ 《Analytical and bioanalytical chemistry》2006,386(6):1741-1748
In this study a new spectrofluorimetric method for the direct determination of metoprolol in human plasma is presented and
discussed. It is based on the use of fluorescence excitation–emission matrices (EEMs) and second-order calibration performed
with parallel factor analysis (PARAFAC) or alternating trilinear decomposition (ATLD). This methodology enables accurate and
reliable discrimination of the analyte signal, even in the presence of unknown and uncalibrated fluorescent component(s),
which is often referred to as the second-order advantage. No separation or sample pretreatment steps were required. Satisfactory
results were obtained. Metoprolol recoveries in plasma were determined as 87±2% and 90±4% with PARAFAC and ATLD, respectively.
All RSD values of intra- and interday assays were below 5%.
Figure A three-dimensional plot of EEMs for a plasma sample and metoprolol solution 相似文献
2.
M.V. Bosco 《Analytica chimica acta》2006,559(2):240-247
This paper describes a simple and rapid way of monitoring a photocatalytic degradation of phenol in aqueous suspensions of TiO2. A three-way analytical methodology based on fluorescence excitation-emission matrix (EEM) and parallel factor analysis (PARAFAC) was developed to resolve the species present in the reaction mixture and quantify the concentration of phenol and its principal degradation products throughout the degradation. Parameters such as core consistency, fit% and correlation coefficients between recovered and pure spectra were used to determine the appropriate number of factors for the PARAFAC model. The accuracy of the model was evaluated by the root mean square error of prediction (RMSEP). Using a four-factors PARAFAC model, phenol, hydroquinone, resorcinol and catechol, were satisfactorily determined. The proposed method is an interesting alternative to the traditional techniques normally used for monitoring degradation reactions. 相似文献
3.
Bin Hua Frank Dolan Candice Mcghee Thomas E. Clevenger 《International journal of environmental analytical chemistry》2013,93(2):135-147
Water-quality protection and environmental forensics require rapid water monitoring and source identification. In this paper, parallel factor analysis (PARAFAC) of fluorescence excitation-emission matrix spectra (EEMS) was used to characterize and classify water samples from landfills, wastewater treatment plants, lakes, and rivers. The study showed that the optimal number of components was four to represent the data set. The fluorescence fingerprints for water samples from different sources were sufficiently different, so qualitative water classification could be achieved. Specifically, Component 1 was the major fluorescing centre in river waters, with characteristics consistent with humic-like fluorophores; Component 2 was the dominant fluorophore in the treated wastewaters; Component 3 was the characteristic fluorophore in landfill leachates; and Components 1, 3, and 4 existed in lake waters at comparable weight, among which Component 4 may be considered as a protein- or amino acid-like fluorophore. 相似文献
4.
《Analytica chimica acta》2004,501(2):193-203
According to the committee decision of 12 August 2002 (2002/657/EC) the capability of detection, CCβ, must be set in all analytical methods not only at concentration levels close to zero but also at the maximum permitted limit (PL). In this work we describe a methodology which evaluates the capability of detection of a fluorescence technique with soft calibration models (bilinear and trilinear PLS) to determine tetracyclines (group B1 substances from annex 1 of Directive 96/23/EC). Its estimation is based on the generalisation of the procedure described in International Union of Pure and Applied Chemistry and in the ISO standard 11843 for univariate signals which evaluates the probabilities of false positive (α) and false negative (β). The capability of detection, CCβ, estimated from the second-order signal and the trilinear PLS model is 9.93 μg l−1 of tetracycline, 17.75 μg l−1 of oxytetracycline and 26.31 μg l−1 of chlortetracycline, setting α and β at 0.05. The capability of detection, CCβ, determined around the PL (100 μg kg−1 in milk and muscle) with the second-order signal is 109.4 μg l−1 of tetracycline, 117.0 μg l−1 of oxytetracycline and 124.9 μg l−1 of chlortetracycline, setting α and β at 0.05. The results were compared with those obtained with zero and first-order signals. The effect of the interferences on the capability of detection was also analysed as well as the number of standards used to build the models and their calibration range.When a tetracycline is quantified in presence of uncalibrated ones by means of the trilinear PLS model the errors oscillate between 14.70% for TC and 9.57% for OTC. 相似文献
5.
The effect of the pH (from 3 to 10) on the excitation emission matrices (EEMs) of fluorescence of CdTe quantum dots (QDs), capped with mercaptopropionic acid (MPA), were analyzed by multiway decomposition methods of parallel factor analysis (PARAFAC), a variant of the parallel factor analysis method (PARAFAC2) and multivariate curve resolution alternating least squares (MCR-ALS). Three different sized CdTe QDs with emission maximum at 555 nm (QDa), 594 nm (QDb) and 628 nm (QDc) were selected for analysis. The three-way data structures composed of sets of EEMs obtained as function of the pH (EEMs, pH) do not have a trilinear structure. A marked deviation to the trilinearity is observed in the emission wavelength order—the emission spectra suffers wavelength shift as the pH is varied. The pH-induced variation of the fluorescence properties of QDs is described with only one-component PARAFAC2 or MCR-ALS models—other components are necessary to model scattering and/or other background signals in (EEMs, pH) data structures. Bigger sized QDs are more suitable tools for analytical methodologies because they show higher Stokes shifts (resulting in simpler models) and higher pH range sensitivity. The pH dependence of the maximum wavelength of the emission spectra is particularly suitable for the development of QDs/EEMs wavelength-encoded pH sensor bioimaging or biological label methodologies when coupled to multiway chemometric decomposition. 相似文献
6.
7.
《Analytica chimica acta》2003,491(1):47-56
We simultaneously determined carbendazim, fuberidazole and thiabendazole by excitation-emission matrix (EEM) fluorescence in combination with parallel factor analysis (PARAFAC). Three-way deconvolution provided the pure analyte spectra from which we estimated the selectivity and sensitivity of the pesticides, and the relative concentration in the mixtures from which we established a linear calibration. Special attention was given calculating such figures of merit as precision, sensitivity and limit of detection (LOD), derived from the univariate calibration curve. The method, which had a relative precision of around 2-3% for the three pesticides, provided limits of detection of 20 ng ml−1 for carbendazim, 4.7 ng ml−1 for thiabendazole and 0.15 ng ml−1 for fuberidazole. The accuracy of the method, evaluated through the root mean square error of prediction (RMSEP), was 27.5, 1.4, and 0.03 ng ml−1, respectively, for each of the pesticides. 相似文献
8.
Non-negative matrix approximation (NNMA) has been used in diverse scientific fields, but it still has some major limitations. In the present study a novel trilinear decomposition method, termed three-way NNMA (TWNNMA), was developed. The method decomposes three-way arrays directly without unfolding and overcomes the restriction of locking zero elements in the deduced multiplicative update rules by adding a positive symmetric matrix. Direct trilinear decomposition was used as the TWNNMA initialization method and experimental results confirm that this greatly accelerated the convergence. An obvious advantage of TWNNMA is the uniqueness of the non-negative solution, which facilitates a better understanding of the underlying physical realities of complex data. TWNNMA was applied in complex systems such as chemical kinetics, second-order calibration and analysis of GC-MS data. The results demonstrate that TWNNMA, differing from previous trilinear decomposition methods, is comparable to existing second-order calibration methods and represents a promising resolution method for complex systems. 相似文献
9.
This study presents an in‐depth discussion of the differential properties of various iterative trilinear decomposition algorithms, including Parallel Factor Analysis‐Alternating Least Squares (PARAFAC‐ALS), Alternating Trilinear Decomposition (ATLD), Self‐Weighted Alternating Trilinear Decomposition (SWATLD), and Alternating Penalty Trilinear Decomposition (APTLD). The shape of each algorithm's objective function (“convex” or “strictly convex”) is related to the algorithm's sensitivity to the estimated component number of the trilinear system. Different situations near the objective solution are analyzed both theoretically and numerically. The wall of perturbation generated by deviations in the iterative steps prevents the PARAFAC algorithm from achieving the objective solution when the component number is overestimated. This may explain, from a calculational perspective, why the PARAFAC algorithm could not obtain the objective solution or any equivalent thereto (although equivalents might still be chemically meaningful optimal solutions). The different effects of deviation and residual on the algorithms are demonstrated by numerical analysis in this paper. The convergence rate can be improved by the use of high‐performance computing strategy of the specific algorithm. The concept of solution set discussed in this paper complements the theory of the uniqueness of trilinear decomposition. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
10.
This paper reports a simple, rapid, and effective method for quantitative analysis of 6-methylcoumarin (6-MC) and 7-methoxycoumarin (7-MOC) in cosmetics using excitation–emission matrix (EEM) fluorescence coupled with second-order calibration. After simple pretreatments, the adopted calibration algorithms exploiting the second-order advantage, i.e., parallel factor analysis (PARAFAC) and self-weighted alternating tri-linear decomposition (SWATLD), could allow the individual concentrations of the analytes of interest to be predicted even in the presence of uncalibrated interferences. In the analysis of facial spray, with the external calibration method, the average recoveries attained from PARAFAC and SWATLD with the factor number of 3 (N = 3) were 101.4 ± 5.5 and 97.5 ± 4.1% for 6-MC, and 103.3 ± 1.7 and 101.7 ± 1.8% for 7-MOC, respectively. Moreover, in the analysis of oil control nourishing toner, the standard addition method (SAM) was suggested to overcome the partial fluorescence quenching of 6-MC induced by the analyte–background interaction, which also yielded satisfactory prediction results. In addition, the accuracy of the two algorithms was also evaluated through elliptical joint confidence region (EJCR) tests as well as figures of merit (FOM), including sensitivity (SEN), selectivity (SEL) and limit of detection (LOD). It was found that both algorithms could give accurate results, only the performance of SWATLD was slightly better than that of PARAFAC in the cases suffering from matrix effects. The method proposed lights a new avenue to determine quantitatively 6-MC and 7-MOC in cosmetics, and may hold great potential to be extended as a promising alternative for more practical applications in cosmetic quality control, due to its advantages of easy sample pretreatment, non-toxic and non-destructive analysis, and accurate spectral resolution and concentration prediction. 相似文献
11.
Chao Kang Hai-Long WuJing-Jing Song Hui XuYa-Juan Liu Yong-Jie YuXiao-Hua Zhang Ru-Qin Yu 《Analytica chimica acta》2015
There is a great deal of interest in decompositions of multilinear component models in the field of multi-way calibration, especially the three-way case. A flexible novel trilinear decomposition algorithm of the trilinear component model as a modification of an alternating least squares algorithm for three-way calibration is proposed. The proposed algorithm (constrained alternating trilinear decomposition, CATLD) is based on an alternating approximate least-squares scheme, in which two extra terms are added to each loss function, making it more efficient and flexible. The analysis of simulated three-way data arrays shows that it converges fast, is insensitive to initialization, and is insensitive to the overestimated number of components used in the decomposition. The analysis of real excitation–emission matrix (EEM) fluorescence and real high performance liquid chromatography–photodiode array detection (HPLC–DAD) data arrays confirms the results of the simulation studies, and shows that the proposed algorithm is favorable not only for EEMs but also for HPLC–DAD data. The three-way calibration method based on the CATLD algorithm is very efficient and flexible for direct quantitative analysis of multiple analytes of interest in complex systems, even in the presence of uncalibrated interferents and varying background interferents. Additionally, a theoretical extension of the proposed algorithm to the multilinear component model (constrained alternating multilinear decomposition, CAMLD) is developed. 相似文献
12.
A novel approach is proposed for direct quantitative analysis of thiabendazole in the orange extract by using excitation-emission matrix fluorescence coupled with second-order calibration methods based on the alternating trilinear decomposition(ATLD) and the alternating normalization-weighted error(ANWE) algorithms,respectively. The average recoveries of thiabendazole in the orange extract by using ATLD and ANWE with an estimated component number of two were 99.7 ± 3.3% and 103.5 ± 4.1%,respectively. Furthermore,the accuracy of the two algorithms was also evaluated through elliptical joint confidence region(EJCR) tests as well as figures of merit,such as sensitivity(SEN),selectivity(SEL) and limit of detection(LOD). The experimental results demonstrate that both algorithms have been satisfactorily applied to the determination of thiabendazole in orange extract,and the perform-ance of ANWE is slightly better than that of ATLD. 相似文献
13.
A novel method is developed for the direct determination of naphazoline hydrochloride(NAP) and pyridoxine hydrochloride(VB6) in commercial eye drops. By using excitation–emission matrix(EEM)fluorescence coupled with second-order calibration method based on the alternating trilinear decomposition(ATLD) algorithm, the proposed approach can achieve quantitative analysis successfully even in the presence of unknown and uncalibrated interferences. The method shows good linearity for NAP and VB6 with correlation coefficients greater than 0.99. The results were in good agreement with the labeled contents. To further confirm the feasibility and reliability of the proposed method, the same batch samples were analyzed by multiple reaction monitoring(MRM) based on LC–MS/MS method.T-test demonstrated that there are no significant differences between the prediction results of the two methods. The satisfactory results obtained in this work indicate that the use of the second-order calibration method coupled with the EEM is a promising tool for industrial quality control and pharmaceutical analysis due to its advantages of high sensitivity, low-cost and simple implementation. 相似文献
14.
Sarkar P Bharill S Gryczynski I Gryczynski Z Nair MP Lacko AG 《Journal of photochemistry and photobiology. B, Biology》2008,92(1):19-23
The solvatochromic fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) has been used to study the hydrophobicity and conformational dynamics of lecithin:cholesterol acyltransferase (LCAT). The ANS to LCAT binding constant was estimated from titrations with ANS, keeping a constant concentration of LCAT (2 microM). Apparent binding constant was found to be dependent on the excitation. For the direct excitation of ANS at 375 nm the binding constant was 4.7 microM(-1) and for UV excitation at 295 nm was 3.2 microM(-1). In the later case, not only ANS but also tryptophan (Trp) residues of LCAT is being excited. Fluorescence spectra and intensity decays show an efficient energy transfer from tryptophan residues to ANS. The apparent distance from Trp donor to ANS acceptor, estimated from the changes in donor lifetime was about 3 nm and depends on the ANS concentration. Steady-state and time-resolved fluorescence emission and anisotropies have been characterized. The lifetime of ANS bound to LCAT was above 16 ns which is characteristic for it being in a hydrophobic environment. The ANS labeled LCAT fluorescence anisotropy decay revealed the correlation time of 42 ns with a weak residual motion of 2.8 ns. These characteristics of ANS labeled LCAT fluorescence show that ANS is an excellent probe to study conformational changes of LCAT protein and its interactions with other macromolecules. 相似文献
15.
Cell culture media are very complex chemical mixtures that are one of the most important aspects in biopharmaceutical manufacturing. The complex composition of many media leads to materials that are inherently unstable and of particular concern, is media photo-damage which can adversely affect cell culture performance. This can be significant particularly with small scale transparent bioreactors and media containers are used for process development or research. Chromatographic and/or mass spectrometry based analyses are often time-consuming and expensive for routine high-throughput media analysis particularly during scale up or development processes. 相似文献
16.
Andrea Ventrella Lucia Catucci Elena Piletska Sergey Piletsky Angela Agostiano 《Bioelectrochemistry (Amsterdam, Netherlands)》2009,77(1):19-25
In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media. 相似文献
17.
A hydride generation-atomic fluorescence spectrometry (AFS) method was developed for the detection of arsenic (As) and lead (Pb) in chromite by alkali fusing and acid dissolving. The sample was fused by Na2O2 and acidification dissolved by HCl. As was quantified by AFS with 10% (V/V) HCl as the carrier flow agent, and KBH4(15 g/L) as reducing agent. Pb was quantified by AFS with 1% (V/V) HCl as the carrier flow agent, and KBH4(20 g/L)-KOH(10 g/L)-K3[Fe(CN)6] (15 g/L) as reducing agent. Under the optimum conditions, the correlation coefficient (R2) was 1.0000 in the range of 0.5-10 μg/L, the limit of detection (LOD) was 0.05 μg/g with the relative standard deviations (RSDs) of 1.4%-6.0% and the recoveries of 96.2%-116.7% for As. And the R2 was 0.9998 in the range of 1.25-25 μg/L, the LOD was 0.2 μg/g with the RSDs of 1.5%-3.7% and the recoveries of 95.9%-112.2% for Pb. In addition, the method was validated by certified reference sample analysis and multi-laboratory test, which meets the requirements for the standardized quantitative analysis of trace As and Pb in chromite. © 2023, Youke Publishing Co.,Ltd. All rights reserved. 相似文献
18.
Usefulness of parallel factor analysis to handle the matrix effect in the fluorescence determination of tetracycline in whey milk 总被引:2,自引:0,他引:2
The determination of tetracycline by fluorescence spectrophotometry in complex matrices has some difficulties, because the presence of other compounds in the matrix affects the analytical signal. In this work, the effect of some inorganic species that are present in whey milk on the fluorescence signal of tetracycline is studied using a D-optimal experimental design. Next, an experimental strategy is proposed in conjunction with Parallel Factor Analysis, PARAFAC, modeling that leads to suitably modeling the severe matrix effect in the determination of tetracycline in whey milk. A specific design is performed in such a way that the lack of trilinearity due to the effect of the presence of interferents on the signal is obviated. Then, ten test samples from three brands of milk, spiked with different quantities of tetracycline and measured in 2 days were analysed using this methodology (mean of the absolute value of the relative errors: 5.1%). The developed analytical method fulfils the property of trueness, the relative errors being, both in calibration and prediction, inside the interval set by Commission Decision 2002/657/EC at these concentration levels. Decision limits (CCα) at x0 = 0 μg L−1 and at x0 = 100 μg L−1 were 13.2 and 112.4 μg L−1 respectively, for α = 0.05; whereas detection capabilities (CCβ) were 25.9 μg L−1 and 124.4 μg L−1 respectively for α = β = 0.05. 相似文献
19.
A specific, sensitive, and accurate assay for quantitation of verapamil has been developed. The method involves a single extraction step with n-heptane, followed by evaporation at room temperature under nitrogen. 0.1 μl of the extract was injected into a capillary column coated with crosslinked 5% phenylmethylsilicone. The column separated verapamil, norverapamil, and its internal standard within 15 minutes using temperature programming from 90 to 290°C. The lower limit of detection was 1 ng/ml for verapamil. The calibration curve was linear in the concentration range (5–300 ng/ml). Plasma concentration data from dogs receiving intravenous verapamil infusion are presented. 相似文献
20.
The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360-900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging. 相似文献