首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
Somer G  Unal U 《Talanta》2004,62(2):323-328
Using the DPP polarograms of wet digested cauliflower sample in acetate buffer at pH values of 2, 4 and 6, Fe, Zn, Mo, Se, Cr, Cd, Pb, Ti and Cu quantities were determined. The best separation and determination conditions for Zn, Se and Mo was pH 2; for Cr, Zn, Mo and As was pH 4; for Pb pH 6, for Ti, Cu and Fe was pH 6-7 EDTA, for Cd pH 2 EDTA and for lead pH 6, all in acetate buffer. The trace element ranges for cauliflowers from two different seasons were (first figure for winter, the second for summer) for Se 120-250 μg g−1, Fe 70-85 μg g−1, Cu 320-150 μg g−1, Ti 90-120 μg g−1, Cr 130-630 μg g−1, Zn 90-550 μg g−1, Mo 170-230 μg g−1, Cd 20 μg g−1 (in winter) and Pb 130-300 μg g−1 in dry sample. Cd was under the detection limit in summer. The length of digestion time had no effect on the recovery of copper, iron, molybdenum and zinc between 15 and 3 h of digestion.  相似文献   

2.
Manganese is extracted on-line from solid seafood samples by a simple continuous ultrasound-assisted extraction system (CUES). This system is connected to an on-line manifold, which permits the flow-injection flame atomic absorption spectrometric determination of manganese. Optimisation of the continuous leaching procedure is performed by an experimental design. The proposed method allows the determination of manganese with a relative standard deviation of 0.9% for a sample containing 23.4 μg g−1 manganese (dry mass). The detection limit is 0.4 μg g−1 (dry mass) for 30 mg of sample and the sample throughput is ca. 60 samples per hour. Accurate results are obtained by measuring TORT-1 certified reference material. The procedure is finally applied to mussel, tuna, sardine and clams samples.  相似文献   

3.
A solid-liquid extraction method is developed to establish the contents of selenium in breast cancer biopsies. The method is based on the ultrasound-assisted extraction of selenium from pretreated biopsies prior to Se determination by atomic absorption spectrometry with longitudinal-Zeeman background correction. Fifty-one breast biopsies were collected from the Cies Hospital (Vigo, Spain), 32 of which correspond to tumor tissue and 19 to normal tissue (parenchyma). Difficulties arising from the samples analyzed, i.e. small samples mass (50-100 mg), extremely low Se contents and sample texture modification including tissue hardening due to formaldehyde preservation are addressed and overcome. High intensity sonication using a probe together with addition of hydrogen peroxide succeeded in completely extracting Se from biopsies. The multiple injection technique was useful to tackle the low Se contents present in some biopsies. The detection limit was 25 ng g−1 of Se and the precision, expressed as relative standard deviation, was less than 10%. Se contents ranged from 0.08 to 0.4 μg g−1 for parenchyma samples and from 0.09 to 0.8 μg g−1 for tumor samples. In general, Se levels in tumor biopsies were higher as compared with the adjacent normal tissue in 19 patients by a factor of up to 6. Analytical data confirmed Se accumulation in the breast tumors.  相似文献   

4.
A procedure for the extraction and determination of methyl mercury and mercury (II) in fish muscle tissues and sediment samples is presented. The procedure involves extraction with 5% (v/v) 2-mercaptoethanol, separation and determination of mercury species by HPLC-ICPMS using a Perkin-Elmer 3 μm C8 (33 mm × 3 mm) column and a mobile phase 3 containing 0.5% (v/v) 2-mercaptoethanol and 5% (v/v) CH3OH (pH 5.5) at a flow rate 1.5 ml min−1 and a temperature of 25 °C. Calibration curves for methyl mercury (I) and mercury (II) standards were linear in the range of 0-100 μg l−1 (r2 = 0.9990 and r2 = 0.9995 respectively). The lowest measurable mercury was 0.4 μg l−1 which corresponds to 0.01 μg g−1 in fish tissues and sediments. Methyl mercury concentrations measured in biological certified reference materials, NRCC DORM - 2 Dogfish muscle (4.4 ± 0.8 μg g−1), NRCC Dolt - 3 Dogfish liver (1.55 ± 0.09 μg g−1), NIST RM 50 Albacore Tuna (0.89 ± 0.08 μg g−1) and IRMM IMEP-20 Tuna fish (3.6 ± 0.6 μg g−1) were in agreement with the certified value (4.47 ± 0.32 μg g−1, 1.59 ± 0.12 μg g−1, 0.87 ± 0.03 μg g−1, 4.24 ± 0.27 μg g−1 respectively). For the sediment reference material ERM CC 580, a methyl mercury concentration of 0.070 ± 0.002 μg g−1 was measured which corresponds to an extraction efficiency of 92 ± 3% of certified values (0.076 ± 0.04 μg g−1) but within the range of published values (0.040-0.084 μg g−1; mean ± s.d.: 0.073 ± 0.05 μg g−1, n = 40) for this material. The extraction procedure for the fish tissues was also compared against an enzymatic extraction using Protease type XIV that has been previously published and similar results were obtained. The use of HPLC-HGAAS with a Phenomenox 5 μm Luna C18 (250 mm × 4.6 mm) column and a mobile phase containing 0.06 mol l−1 ammonium acetate (Merck Pty Limited, Australia) in 5% (v/v) methanol and 0.1% (w/v) l-cysteine at 25 °C was evaluated as a complementary alternative to HPLC-ICPMS for the measurement of mercury species in fish tissues. The lowest measurable mercury concentration was 2 μg l−1 and this corresponds to 0.1 μg g−1 in fish tissues. Analysis of enzymatic extracts analysed by HPLC-HGAAS and HPLC-ICPMS gave equivalent results.  相似文献   

5.
Zhang L  Ishi D  Shitou K  Morita Y  Isozaki A 《Talanta》2005,68(2):336-342
A simple and rapid method for simultaneous determination of As, Se and Sb was studied by graphite furnace atomic absorption spectrometry (GFAAS). Titanium dioxide adsorbing As, Se and Sb was separated from sample solution (100 ml) with a membrane filtration (0.45 μm), and then prepared to be slurry (5.0 ml) by adding ultrapure water. The behavior and influence of titanium dioxide on determination of As, Se and Sb were investigated in this experiment. The optimal conditions of a furnace for these elements were chosen as follows: pyrolysis temperature was 150 °C, and atomization temperature was 2300 °C. The optimal conditions of adsorption for As, Se and Sb on titanium dioxide were listed: pH 2.0 in sample solution; 10 min of stirring time; and 20.0 mg titanium dioxide. The difference of the chemical valence of each element had no effect on the recovery of each element at the same optimal conditions. Limits of detection (3σ) for As, Se and Sb were found to be 0.21 μg l−1, 0.15 μg l−1 and 0.15 μg l−1, respectively, with enrichment rate of 20, when 20 μl of slurry was injected into a Zr-coating tube. The proposed method was applied to tap water and river water.  相似文献   

6.
A new method was developed for simultaneous determination of trace arsenic and antimony in Chinese herbal medicines by hydride generation-double channel atomic fluorescence spectrometry with a Soxhlet extraction system and an n-octanol-water extraction system, respectively. The effects of analytical conditions on the fluorescence intensity were investigated and optimized. A water-dissolving and methanol-water-dissolving capability were compared. The contents of different species in five Chinese herbal medicines and their decoctions were analyzed. The concentration ratios of n-octanol-soluble As or Sb to water-soluble As or Sb were related to the kinds of medicine and the acidity of the decoction. Soxhlet extraction was found to be an effective method for plants pretreatment for determination of arsenic and antimony species in Chinese herbs; the interferences of coexisting ions were evaluated. The proposed method has the advantages of simple operation, high sensitivity and high speed, with 3σ detection limits of 0.094 μg g−1 for As(III), 0.056 μg g−1 for total As, 0.063 μg g−1 for Sb(III) and 0.019 μg g−1 for total Sb in a 1.0 g of the sample.  相似文献   

7.
Determination of Se(IV) and Se(VI) in high saline media was investigated by cathodic stripping voltammetry (CSV). The voltammetric method was applied to assay selenium in seawater, hydrothermal and hemodialysis fluids. The influence of ionic strength on selenium determination is discussed. The CSV method was based on the co-electrodeposition of Se(IV) with Cu(II) ions and Se(VI) determined by difference after sample UV-irradiation for photolytic selenium reduction. UV-irradiation was also used as sample pre-treatment for organic matter decomposition. Detection limit of 0.030 μg L−1 (240 s deposition time) and relative standard deviation (RSD) of 6.19% (n = 5) for 5.0 μg L−1 of Se(IV) were calculated. Linear calibration range for selenium was observed from 1.0 to 100.0 μg L−1. Concerning the pre-treatment step, best results were obtained by using 60 min UV-irradiation interval in H2O2/HCl medium. Se(VI) was reduced to the Se(IV) electroactive species with recoveries between 91.7% and 112.9%. Interferents were also investigated.  相似文献   

8.
Microwave energy has been novelty applied to speed up a tetramethylammonium hydroxide (TMAH) alkaline digestion of seaweed samples and to assist distillation of iodine from seaweed alkaline digests. Iodide in the alkaline digests from seaweed and distilled iodine, reduced back to iodine in a hydroxylamine hydrochloride solution, was determined by a catalytic spectrophotometric method based on the catalytic effect of iodide on the oxidation of As(III) by Ce(IV) in H2SO4/HCl medium (Sandell-Kolthoff reaction). The determination of iodide was directly performed in the alkaline digests, while total iodine was assessed by analyzing the hydroxylamine hydrochloride solution after the distillation process. Microwave-assisted alkaline digestion was performed using 7.5 mL of TMAH and irradiating samples at 670 W for two 5.5 min steps. Microwave-assisted distillation was carried out using 4.0 mL of the alkaline digest and 3 mL of a 2.2 M hydrochloric acid and 0.05% (m/v) sodium nitrite solution, with a microwave power at 670 W for two 90 s steps. The distillate (iodine vapor) was bubbled in 10 mL of a 500 μg mL−1 hydroxylamine hydrochloride solution (accepting solution). The linear calibration ranges were 0.30-20.0 and 0.40-20.0 μg L−1 for iodide determination and total iodine determination, respectively. The limit of detection was 9.2 μg g−1 for iodide and 28.5 μg g−1 for total iodine. Repeatability of the overall procedures, expressed as R.S.D. for 11 determinations, was 2.6% for 196.3 μg g−1 of iodide measured after microwave-assisted alkaline digestion, and 5.8% for 954.3 μg g−1 of total iodine by microwave-assisted alkaline digestion followed by microwave-assisted distillation. Finally, accuracy of the methods was assessed by analyzing the NIST-09 (Sargasso) certified reference material and the methods were applied to the determination of iodide and total iodine in different Atlantic edible seaweed samples with satisfactory results.  相似文献   

9.
In geological samples, Se concentration ranges from 1 × 10−9 g g−1 up to 1 × 10−3 g g−1. The analytical difficulty at low concentration (<1 μg g−1), is one of the main reasons why the geological cycle of Se is poorly known. The analytical method that consisted of preconcentration of Se with thiol cotton fiber (TCF) followed by graphite furnace atomic absorption spectrometry (GFAAS) has been modified by finishing with instrumental neutron activation analysis (INAA). The modified technique involves sample dissolution (HF-HNO3-H2O2) and evaporation to dryness at low temperature (55-60 °C) to avoid selenium volatilization. SeVI is converted to SeIV by adding 6 M HCl to the dry residuum and the solution is then heated in a covered boiling bath (95-100 °C). The solution is diluted to obtain 0.6 M HCl and then collected on TCF. The TCF is placed in a polyethylene vial for irradiation in the SLOWPOKE II reactor (Montréal) for 30 s at a neutron flux of 1015 m−2 s−1. The 162 keV peak of 77mSe (half-life 17.36 s) is read for 20 s after a decay of 7 s. The amount of sample to be dissolved is controlled by two competing effects. To obtain low detection limits, a larger amount of sample should be dissolved. On the other hand, the TCF could become saturated with chalcophile elements when large sample is used. Sulfur is a good indicator of the amount of Se and chalcophile elements present. In S poor sample (<100 μg g−1) 3.0 g of sample was used and the LD was ∼2 ng g−1. In S high samples (>1.5% S) 0.05 g of sample was used and the LD was ∼120 ng g−1. The present work also includes suggested Se concentration for eight international geological reference materials (IGRM) that compare favorably with literature values.  相似文献   

10.
Liu Y  Chang X  Wang S  Guo Y  Din B  Meng S 《Talanta》2004,64(1):160-166
A highly sensitive and selective solid-phase spectrophotometric method for the determination of sub-μg l−1 level nickel(II) is described. Nickel(II) was sorbed on a styrene-divinylbenzene-type resin Amberlite XAD-4 as a Ni(II)-o-carboxylphenyldiazoaminoazobenzene (o-CDAA) complex. At pH 9.0, resin phase absorbances at 588 and 800 nm were measured directly with an apparent molar absorptivity of 2.95×107 g mol−1 cm−1. The linear range of the determination was 1.2-41 μg g−1 resin. The detection limit and the quantification limit were found to be 0.24 and 0.76 μg g−1 resin, respectively. The relative standard deviation of 10 replicate determinations of 1.0 μg nickel(II) in 100 ml sample was of 1.5%. The tolerance limit of coexistent ions was also investigated. Most of them are in tolerable amount. For practical analyses, 1 ml acetylacetone used can eliminate the interferences caused by Cu and Fe. The procedure was validated by analysis a certified water reference material (GBW 08618 Beijing, China) and a tomato leaf certified reference material (GBW 08402 Beijing, China) with the results in agreement with the certified values. The method was applied to the determination of nickel(II) in water and vegetable samples with satisfactory results.  相似文献   

11.
A robust, accurate and sensitive analytical procedure for the determination of Se in plant and peat samples by hydride generation-atomic fluorescence spectrometry (HG-AFS) was developed. Aliquots (200 mg) of dried samples were digested with 3 mL nitric acid and 0.5 mL hydrogen peroxide in closed, pressurized PTFE vessels in a microwave oven at 220 °C. Addition of HBF4 or HF to the digestion mixture was not required because experiments demonstrated that Se was not hosted in the silicate fraction of the investigated sample matrices. Selenium(VI) was directly reduced to Se(IV) in the undiluted digestion solutions after addition of 3.8 mL of 4 M HCl in a microwave oven at 103 °C for 3 min. Other reduction reagents, such as hydroxylamine hydrochloride or urea, were not necessary to cope with potential interferences from nitrogen oxides that could hamper the reliable determination of Se by HG-AFS. Optimum hydride generation of Se was achieved by using 0.9% NaBH4 and 4.5 M HCl. A solution detection limit of 11 ng L−1 was obtained under the optimized experimental conditions which corresponds to a method detection limit of 2.8 ng g−1 in solid peat and plant materials. The precision of replicate measurements was better than 3% at Se concentrations of 50 ng L−1. The analytical procedure was critically evaluated by analysing two certified plant reference materials (SRM 1515 Apple Leaves and SRM 1547 Peach Leaves) as well as three peat reference materials. Excellent agreement between the experimental values ranging from 50 ng g−1 to ∼2 μg g−1 and the certified concentrations was obtained.  相似文献   

12.
Rohr U  Meckea L  Strubel C 《Talanta》2004,63(4):933-939
This paper describes an analytical method for the determination of reductive sulphur (S(IV), S(-II)) in glass. The glass sample is dissolved in hydrofluoric/hydrochloric acid mixture and the sulphur is separated via distillation in an apparatus made of polyfluoralkoxyethylene (PFA). The distilled hydrogen sulphide is trapped in buffered boric acid-zinc acetate solution and subsequently determined after conversion to an ethylene blue dye. The range of the method lies within a range of 2-1200 μg g−1 reductive sulphur. The quantification limit for reductive sulphur is 2 μg g−1.Different analysed glass types show either no detectable reductive sulphur or up to 30% of the total sulphur content reductive sulphur. The inter-laboratory standard deviation shown by a round robin test performed is excellent (±4 μg g−1; average 59 μg g−1). Sources of error of the methodology are discussed.  相似文献   

13.
A simple and rapid method for the direct determination of Cd, Cr, Cu, Pb and Zn in soil was developed. The method was developed using three certified reference materials of soil: Eutric Cambisol, Orthic Luvisols and Rendzina, which differed in their matrix composition. Chemical modifiers were essential to achieve reproducible and interference-free signals for the analytes studied. The best results were obtained with a Pd/Mg(NO3)2 admixture for the determination of Cd, Pb and Zn and NH4F for Cu. The combination of W (as a permanent modifier) and Mg(NO3)2 provided well-defined signal profiles for Cr. The following spectral lines were used: Cd 228.8 nm, Cr 520.6 nm, Cu 218.2 nm, Pb 205.3 nm and Zn 307.6 nm. The limit of detection was 4.2 ng g− 1 for Cd, 1.1 μg g− 1 for Cr, 0.5 μg g− 1 for Cu, 1.3 μg g− 1 for Pb and 8.6 μg g− 1 for Zn for the maximum sample mass used. Under optimized conditions, the analyte and matrix were separated effectively in situ, and aqueous standards could be used for calibration.  相似文献   

14.
Correia PR  Oliveira PV 《Talanta》2005,67(1):46-53
The effectiveness of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for As and Se determination in urine. Co and Sn were selected as internal standard (IS) candidates based on the evaluation of some physico-chemical parameters related to the atomization. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte (axis x), precision, and accuracy of the analytical results were the supportive parameters to choose Co as the most appropriate IS. The urine samples were diluted 1 + 2 to 1.0% (v/v) HNO3 + 80 μg L−1 Co2+. The mixture 20 μg Pd + 3 μg Mg was used as chemical modifier and the optimized temperatures for pyrolysis and atomization steps were 1400 and 2300 °C, respectively. The characteristic masses for As (47 ± 1 pg) and Se (72 ± 2 pg) were estimated from the analytical curves. The detection limits (n = 20, 3δ) were 1.8 ± 0.1 and 2.6 ± 0.1 μg L−1 for As and Se, respectively. The reliability of the entire procedure was checked with the analysis of certified reference material from Sero AS(Seronorm™ Trace Elements in Urine). The obtained results showed the matrix interference disallowed the instrument calibration with aqueous standards. The best analytical condition was achieved when matrix-matched standards were used in combination with Co as IS, which improved the recoveries obtained for As. Under this experimental condition, eight urine samples were analysed and spiked with 10 and 25 μg L−1 As and Se. The mean recoveries were 96 ± 6% (10 μg L−1 As), 95 ± 6% (25 μg L−1 As), 101 ± 7% (10 μg L−1 Se), and 97 ± 4% (25 μg L−1 Se).  相似文献   

15.
A flow injection analysis (FIA) method using on-line separation and preconcentration with a novel metal scavenger beads, QuadraSil™ TA, has been developed for the ICP-OES determination of traces of palladium. QuadraSil TA contains diethylenetriamine as a functional group on spherical silica beads and shows the highest selectivity for Pd(II) at pH 1 (0.1 mol l−1 hydrochloric acid) solution. An aliquot of the sample solution prepared as 0.1 mol l−1 in hydrochloric acid was passed through the QuadraSil TA column. After washing the column with the carrier solution, the Pd(II) retained on the column was eluted with 0.05 mol l−1 thiourea solution and the eluate was directly introduced into an ICP-OES. The proposed method was successfully applied to the determination of traces of palladium in JSd-2 stream sediment certified reference material [0.019 ± 0.001 μg g−1 (n = 3); provisional value: 0.0212 μg g−1] and SRM 2556 used auto catalyst certified reference material [315 ± 4 μg g−1 (n = 4); certified value: 326 μg g−1]. The detection limit (3σ) of 0.28 ng ml−1 was obtained for 5 ml of sample solution. The sample throughputs for 5 ml and 100 μl of the sample solutions were 10 and 15 h−1, respectively.  相似文献   

16.
Hong Wu  Yan Jin  Shuping Bi 《Talanta》2007,71(4):1762-1768
The existence of dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) in some environmental samples can cause serious interference on Se(IV) determination by hydride generation atomic fluorescence spectrometry (HG-AFS) due to their contribution on HG-response. A flow injection separation and preconcentration system coupled to HG-AFS was therefore developed by on-line coprecipitation in a knotted reactor (KR) for eliminating interference subjected from organoselenium. The sample, spiked with lanthanum nitrate, was merged with an ammonium buffer solution (pH 8.8), which promoted coprecipitation of Se(IV) and quantitative collection by 150 cm PTFE KR. DMSe and DMDSe, however, were unretained and expelled from the KR. An air flow was introduced to remove the residual solution from the KR, then a 1.2 mol l−1 HCl was pumped to dissolve the precipitates and merge with KBH4 solution for HG-AFS detection. The interference of DMSe and DMDSe on the Se(IV) determination by conventional HG-AFS and its elimination by the developed separation and preconcentration system were evaluated. With optimal experimental conditions and with a sample consumption of 12.0 ml, an enhancement factor of 18 was obtained at a sample frequency of 24 h−1. The limit of detection was 0.014 μg l−1 and the precision (R.S.D.) for 11 replicate measurements of 1.0 μg l−1 Se(IV) was 2.5%. The developed method was successfully applied to the determination of inorganic selenium species in a variety of natural water samples.  相似文献   

17.
The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g−1 and 16.4 ± 0.75 μg g−1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g−1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g−1, and the limits of quantification were 25 and 27 ng g−1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g−1 Cd, and hence below the maximum value of 20 μg g−1 Cd permitted by Brazilian legislation.  相似文献   

18.
Dos Santos LB  Abate G  Masini JC 《Talanta》2004,62(4):667-674
This paper presents the optimization of instrumental and solution parameters for determination of atrazine in river waters and formulation by square wave voltammetry (SWV) using a hanging mercury drop electrode. The best sensitivity (35.2±0.4 μA ml μg−1) was achieved using a frequency of 400 Hz and a medium composed of 40 mmol l−1 Britton-Robinson (BR) buffer at pH 1.9. The detection limit was 2 μg l−1 with a linear dynamic range between 10 and 250 μg l−1. Application of the method to real samples of river waters fortified with 10 μg l−1 of atrazine resulted recoveries between 92 and 116%. Additionally, good agreement was observed between results obtained by the proposed method and by HPLC for river water samples spiked with 25 μg l−1 of atrazine. The determination was not affected by the presence of humic acid at concentration of 5 mg l−1, indicating that interactions of the herbicide with this class of compounds are fully labile. The stability of the voltammetric signal for samples spiked with 250 μg l−1 atrazine was evaluated over a period of 14 days in four samples. For two samples, no systematic variation was observed, while for the other two, a decrease of peak current between 3 and 15% occurred, suggesting that the stability is dependent on the sample nature. HPLC analyses suggest formation of deethylatrazine during the second week of storage in the samples for which the SWV peak current had the more intense decrease.  相似文献   

19.
A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG)2 complex was eluted with 1 mol l−1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml−1 Na+, K+, Mg2+, Al3+ and Fe3+; 5000 μg ml−1 Ca2+ ; 500 μg ml−1 Pb2+; 125 μg ml−1 Zn2+; 50 μg ml−1 Cu2+ and 25 μg ml−1 Ni2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l−1, respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg−1 and 4.06 mg g−1, respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples.  相似文献   

20.
A simple method for the separation and determination of inorganic arsenic (iAs) species in natural and drinking water was developed. Procedures for sample preparation, separation of As(III) and As(V) species and preconcentration of the total iAs on fixed bed columns were defined. Two resins, a strong base anion exchange (SBAE) resin and a hybrid (HY) resin were utilized. The inductively-coupled plasma-mass spectrometry method was applied as the analytical method for the determination of the arsenic concentration in water. The governing factors for the ion exchange/sorption of arsenic on resins in a batch and a fixed bed flow system were analyzed and compared. Acidity of the water, which plays an important role in the control of the ionic or molecular forms of arsenic species, was beneficial for the separation; by adjusting the pH values to less than 8.00, the SBAE resin separated As(V) from As(III) in water by retaining As(V) and allowing As(III) to pass through. The sorption activity of the hydrated iron oxide particles integrated into the HY resin was beneficial for bonding of all iAs species over a wide range of pH values from 5.00 to 11.00. The resin capacities were calculated according to the breakthrough points in a fixed bed flow system. At pH 7.50, the SBAE resin bound more than 370 μg g−1 of As(V) while the HY resin bound more than 4150 μg g−1 of As(III) and more than 3500 μg g−1 of As(V). The high capacities and selectivity of the resins were considered as advantageous for the development and application of two procedures, one for the separation and determination of As(III) (with SBAE) and the other for the preconcentration and determination of the total arsenic (with HY resin). Methods were established through basic analytical procedures (with external standards, certified reference materials and the standard addition method) and by the parallel analysis of some samples using the atomic absorption spectrometry-hydride generation technique. The analytical properties of both procedures were similar: the limit of detection was 0.24 μg L−1, the limit of quantification was 0.80 μg L−1 and the relative standard deviations for samples with a content of arsenic from 10.00 to 300.0 μg L−1 ranged from 1.1 to 5.8%. The interference effects of anions commonly found in water and some organic species which can be present in water were found to be negligible. Verification with certified reference materials proved that the experimental concentrations found for model solutions and real samples were in agreement with the certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号