首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Y  Adeloju SB 《Talanta》2008,76(4):724-730
A simple and robust flow injection system which permits low sample and reagent consumption is described for rapid and reliable hydride generation atomic absorption spectrometric determination of selenium, arsenic and bismuth. The system, which composed of one peristaltic pump and one four channel solenoid valve, used water as the carrier streams for both sample and NaBH4 solution. Rapid off-line pre-reduction of the analytes was achieved by using hydroxylamine hydrochloride for selenium and a mixture of potassium iodide and ascorbic acid for arsenic and bismuth. Transition metal interference was eliminated with the addition of thiourea and EDTA into the NaBH4 solution and significant sensitivity enhancement was observed for selenium in the presence of thiourea in the reductant solution. Under optimised conditions, the method achieved detection limits of 0.2 ng mL−1 for Se, 0.5 ng mL−1 for As and 0.3 ng mL−1 for Bi. The method was very reproducible, achieving relative standard deviations of 6.3% for Se, 3.6% for As and 4.7% for Bi, and has a sample throughput of 360 h−1. Successful application of the method to the quantification of selenium, arsenic and bismuth in a certified reference river sediment sample is reported.  相似文献   

2.
The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H2Te vapors, is atomized in air–acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an “integrated trap”) was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3σ), was 0.9 ng mL− 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.  相似文献   

3.
The determination of bismuth requires sufficiently sensitive procedures for detection at the μg L−1 level or lower. W-coil was used for on-line trapping of volatile bismuth species using HGAAS (hydride generation atomic absorption spectrometry); atom trapping using a W-coil consists of three steps. Initially BiH3 gas is formed by hydride generation procedure. The analyte species in vapor form are transported through the W-coil trap held at 289 °C where trapping takes place. Following the preconcentration step, the W-coil is heated to 1348 °C; analyte species are released and transported to flame-heated quartz atom cell where the atomic signal is formed. In our study, interferences have been investigated in detail during Bi determination by hydride generation, both with and without trap in the same HGAAS system. Interferent/analyte (mass/mass) ratio was kept at 1, 10 and 100. Experiments were designed for carrier solutions having 1.0 M HNO3. Interferents such as Fe, Mn, Zn, Ni, Cu, As, Se, Cd, Pb, Au, Na, Mg, Ca, chloride, sulfate and phosphate were examined. The calibration plot for an 8.0 mL sampling volume was linear between 0.10 μg L−1 and 10.0 μg L−1 of Bi. The detection limit (3 s/m) was 25 ng L−1. The enhancement factor for the characteristic concentration (Co) was found to be 21 when compared with the regular system without trap, by using peak height values. The validation of the procedure was performed by the analysis of the certified water reference material and the result was found to be in good agreement with the certified values at the 95% confidence level.  相似文献   

4.
This paper describes selenium determination based on Se0 preconcentration in the imprinted polymer (synthesized with 2.25 mmol SeO2, 4-vinylpyridine and 1-vinylimidazole) with subsequent detection on-line in HG-FAAS. During the synthesis, SeO2 is reduced to Se (0). Therefore, there are no MIP neither IIP in the present work, thus we denominated: AIP, i.e., atomically imprinted polymers. For the optimization of analytical parameters Doehlert design was used. The method presented limit of detection and limit of quantification of 53 and 177 ng L−1, respectively, and linear range from 0.17 up to 6 μg L−1 (r = 0.9936). The preconcentration factor (PF), consumptive index (CI) and concentration efficiency (CE) were 232; 0.06 mL and 58 min−1 respectively. The proposed method was successfully applied to determine Se in Brazil nuts (0.33 ± 0.03 mg kg−1), apricot (0.46 ± 0.02 mg kg−1), white bean (0.47 ± 0.03 mg kg−1), rice flour (0.47 ± 0.02 mg kg−1) and milk powder (0.22 ± 0.01 mg kg−1) samples. It was possible to do 12 analyzes per hour. Accuracy was checked and confirmed by analyzing certified reference material (DORM-2, dogfish muscle), and samples precision was satisfactory with RSD lower than 10%.  相似文献   

5.
Takase I  Luna AS  de Campos RC 《Talanta》2003,61(5):597-602
Thiazolylazo p-cresol (TAC) was studied as a masking agent for the determination of Bi in rich Ni and Cu alloys by hydride generation atomic absorption spectrometry (HGAAS). In the presence of TAC, Bi/Ni and Bi/Cu ratios up to 1:160 000 and 1:16 000, respectively, were found to be tolerable. No buffering was necessary once the masking agent was effective even in very acid medium. Limits of detection at the low mug g(-1) range were reached and the accuracy of the procedure was confirmed by the good concordance between found and certified values in the analysis of certified reference materials (CRM).  相似文献   

6.
The determination of zinc in pure copper and nickel-based alloy was successfully accomplished with a longitudinal Zeeman-effect correction and end-capped transversely heated graphite atomizer. Since aqua regia (an acid mixture of nitric acid and hydrochloric acid, 1:3, v/v) was used as the dissolving reagent, volatile ZnCl2 was formed. Consequently, less Zn was found in the sample. EDTA could improve the atomic absorption profiles. Binary modifiers, EDTA + Pd(NO3)2 and EDTA + Mg(NO3)2, were effective for eliminating the chloride interference and the spectral interference from Cu I 213.853 nm. The experimental results obtained with and without the modifiers were compared. Increase of 200 °C in the pyrolysis temperature resulted from the addition of binary modifiers for both pure copper and nickel-based alloys. For pure copper, the atomization temperature increased from 1400 to 1600 °C whereas the atomization temperature increased from 1100 to 1600 °C for nickel-based alloys. The analytical performance of the proposed method was evaluated. Zinc contents in the pure copper and nickel-based alloy standards determined with both binary modifiers agreed closely with the certified values. The recovery ranged from 93 ± 2 to 104 ± 6% at 95% confidence level. The detection limits obtained by the binary modifiers of EDTA + Pd(NO3)2 and EDTA + Mg(NO3)2 were 0.77 and 0.31 pg, respectively.  相似文献   

7.
A digestion mixture of H2SO4/HNO3/H2O2/HF/V2O5 was investigated for decomposition of plant samples and sensitive detection of selenium was achieved by hydride generation atomic fluorescence spectrometry (HG-AFS). The method was found to be accurate and reproducible, with a low detection limit (DL) (0.14 ng g−1 solution). The repeatability of the determination was mostly around 10%, the reproducibility over a period of 8 months for determination of selenium in the standard reference material Trace Elements in Spinach Leaves, NIST 1570a, was 9% and the relative measurement uncertainty was 7% using a coverage factor of 2.3 at 95% probability. The average recovery of the whole procedure was 90%. The characteristics of this method are simple and inexpensive equipment, low consumption of chemicals and the ability to analyse many samples in a short time. The whole procedure was carried out in the same PTFE tube, and in addition only a simple cleaning procedure is needed. As a consequence of all these advantages, the described method is suitable for environmental and nutritional studies. The selenium content was determined in 44 vegetable samples from different regions of Slovenia and the contents found were in the range 0.3-77 ng g−1 wet weight.  相似文献   

8.
Maleki N  Safavi A  Doroodmand MM 《Talanta》2005,66(4):858-862
A hydride generation method for the determination of traces of selenium at ng mL−1 concentration ranges has been introduced using a solid mixture of tartaric acid and sodium tetrahydroborate. Atomic absorption spectrometry (AAS) has been used as the detection system. Several parameters such as the ratio of tartaric acid to sodium tetrahydroborate, type and amount of acid, and the reaction temperature were optimized by using 640 ng mL−1 (16 ng per 25 μL) of Se(IV) standard solution. The calibration curve was linear from 20 to 1200 ng mL−1 (0.5-30 ng Se(IV) per 25 μL). The relative standard deviation (%R.S.D.) of the determination was 1.93% and the detection limit was 10.6 ng mL−1 (265 pg per 25 μL) of Se(IV). The reliability of the method was checked using different types of environmental samples, such as several types of water, a sample of soil and also in a kind of calcium phosphate sample by standard addition method. For conversion of Se(VI) present in real samples to Se(IV), l-cysteine was added to NaBH4 and tartaric acid mixture. The results showed good agreement between this method and other hydride generation techniques.  相似文献   

9.
The effects of several masking agents in the determination of selenium by hydride generation was studied using a continuous flow hydride generator coupled with atomic absorption spectrometry. A miniature argon hydrogen diffusion flame was employed as the atomizer. The effects of masking agents (KI, NaSCN, thiourea, -cysteine, 1,1,3,3 tetramethyl-2-thiourea) were studied both in the absence and in the presence of selected interfering species (Cu, Ag, Au, Ni, Co, Pd, Pt and Fe) and using different addition strategies of the masking agents to the reaction system: in batch mode, either to sample or NaBH4 reducing solution; in on-line mode, to the sample either before or after the HG step). The combined effect of some masking agents was also investigated. The addition mode of the masking agent to the reaction system could play a decisive role in the control of interfering processes both in the absence and in the presence of concomitants. The addition of NaSCN to the reducing solution of NaBH4 produced a moderate catalytic effect, similar to the one obtained in the presence of KI, and improved the tolerance limits for Cu, Ni, Co and Pd. Linearity of calibration graphs was unaffected by the on-line addition of 1,1,3,3 tetramethyl-2-thiourea to sample solution, while under similar conditions thiourea produced dramatic curvature of calibration graphs. The combined use of KI (added to reducing solution) and 1,1,3,3 tetramethyl -2-thiourea (added on-line to the sample) exhibited masking properties comparable but not superior to those of thiourea, except for Pt and Pd for which good tolerance limits were achieved. In the absence of KI in the reductant solution the masking efficiency of 1,1,3,3 tetramethyl-2-thiourea was considerably lowered. The addition of some masking agents such as thiourea, -cysteine and 1,1,3,3 tetramethyl thiourea on-line to reaction solution after the NaBH4+KI reduction step, could be highly effective in the control of Cu and Ag interferences. The method was applied to determination of trace of selenium in pure copper standard reference materials.  相似文献   

10.
A sensitive procedure has been developed for selenium and tellurium determination in milk by hydride generation atomic fluorescence spectrometry (HG-AFS) after microwave-assisted sample digestion. The method provides sensitivity values of 1591 and 997 fluorescence units ng−1 ml−1 with detection limits of 0.005 and 0.015 ng ml−1 for Se and Te, respectively. The application of the developed methodology to the analysis of cow milk samples of the Spanish market evidenced the presence of concentration ranges from 11.1 to 26.0 ng ml−1 for Se, and from 1.04 to 9.7 ng ml−1 for Te having found a good comparability with data obtained after dry-ashing of samples.  相似文献   

11.
A simple, reliable, trace determination of selenomethionine (Semet) based on a direct hydride generation atomic absorption spectrometric method was developed using sodium tetrahydroborate (0.3% in 0.2% NaOH) and hydrochloric acid (3 M). The method excluded any chemical pretreatment prior to hydride generation (HG). The optimized HG system was successfully coupled with the HPLC system. The detection limit (3σ of blank; n=5), reproducibility (R.S.D. of three successive analyses/day, performed on three different days), and repeatability (R.S.D. of three successive analyses) of the method were 1.08 ng ml−1, 9.8% for 9.04 ng ml−1 and 2.1–9.5% for 30.0–1.27 ng ml−1 Semet as Se (standards prepared in Milli-Q water). Calibration graph was linear up to 30 ng ml−1. This HPLC-HG-AAS method is very promising and successfully determined Semet (spiked) in human urine.  相似文献   

12.
Studies of the decomposition rate of the reducing agent sodium tetrahydroborate in alkaline and acidic media and of the reaction rate of the formation of the hydrides under the usual analytical conditions are described. The stripping of the hydrides with different lengths of the stripping coil, with different amounts of hydrogen in the carrier gas and with sodium hydroxide added during and after the stripping process are discussed. Some evidence for the existence of an intermediate during the decomposition reaction of the sodium tetrahydroborate is given. The role of temperature, hydrogen and oxygen during the atomization of the hydrides in an electrically heated quartz cuvette is discussed. Under certain conditions, antimony atoms form dimers or elemental antimony precipitates in the heated cuvette.  相似文献   

13.
A flow injection hydride generation system with a metal furnace atomizer (Inconel 600® alloy) was employed for Bi and Se determination. The presented methods have linear ranges up to 200 and 500 μg L− 1 for Bi and Se, respectively, with good linearities (r2 = 0.9997 and 0.9974, respectively). The limits of quantification obtained according to IUPAC recommendations were 2.3 μg L− 1 for Bi and 6 μg L− 1 for Se, and the relative standard deviations (N = 6) based on Bi and Se analytical responses from real samples were 2.7% and 10%, respectively. Accuracy evaluations were based on certified materials such as SRM 361, SRM 363, and SRM 364 (steel alloys) for Bi, Mess-3 (marine sediment), SRM 397 (human hair), and Bio-Rad2 — 69042 (urine) for Se. Good agreements between the results were obtained at the 95% confidence level, according to the t-test.  相似文献   

14.
In this work, the determination of total As in seawater by hydride generation atomic fluorescence spectrometry was studied. The influence of the chemical, flow and instrumental parameters were investigated and optimized. The pre-reduction of As(V) to As(III) was performed using KI plus ascorbic acid in 3.5 mol L− 1 HCl medium. No multiplicative interference was present and external aqueous calibration could be used. The limit of detection was 36 ng L− 1, while the repeatability was 2% (n = 10), at a 500 ng L− 1 concentration level. The sample throughput was 15 h− 1 if triplicate measurements were made. The accuracy was assessed by the analysis of a seawater certified reference material and excellent agreement between the obtained and certified values was verified. The procedure was used for the analysis of seawater offshore samples collected at the Brazilian coast and results ranging from 860 to 1200 ng L− 1 were found.  相似文献   

15.
Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 μg L−1 with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03–4.00 μg L−1. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.  相似文献   

16.
The use of hydride generation coupled with axial view inductively couple plasma atomic emission spectrometry was presented for the determination of selenium in plant samples. The chemical factors affecting potentially the hydride generation efficiency (hydrochloric acid, sodium borohydride and sodium hydroxide concentrations) were assessed through investigation of chemical interference, accuracy and repeatability. The accuracy of measurements was not affected by elements present in high concentration in the plant matrix (K, Ca, Mg, and P). No interference was also observed with transition metals. Using a real sample (maize) with standard additions, decreases of recoveries were sometimes observed for 0.1% (m/v) NaOH, and attained 13.8% in the most unfavourable case. The final accuracy of the method was verified by using two certified reference materials: CRM 402 (white clover) and CRM 279 (sea lettuce). No statistically significant differences were obtained between the measured concentrations and the certified values. The optimized method was found sensitive (detection limit 0.15 μg l−1), reliable and repeatable (R.S.D. between 1.3% and 4.0%).  相似文献   

17.
用自制的蒸气发生装置,在强还原剂存在下,对铜蒸气的生成进行了详细研究,并通过该装置测定非蒸气发生元素镁和在络合剂掩蔽下测铜两种不同的方法进行了验证。对酸的种类及浓度、NaBH4溶液流速及浓度、反应管道长度的影响等实验参数和干扰情况进行了研究。用该方法测定了面粉中铜的质量分数,检出限为6μg L。  相似文献   

18.
A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l−1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l−1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature.  相似文献   

19.
A systematic study was performed to evaluate the performance of a multiple microflame (MM) quartz tube atomizer (QTA) for minimizing interferences and to improve the extent of the calibration range using a batch system for hydride generation atomic absorption spectrometry (HG AAS). A comparison of the results with conventional QTA on the determination of antimony, arsenic, bismuth and selenium was performed. The interference of As, Bi, Se, Pb, Sn and Sb was investigated using QTA and MMQTA atomizers. Better performance was found for MMQTA, and no loss of linearity was observed up to 160 ng for Se and Sb and 80 ng for As, corresponding to an enhancement of two times for both analytes when compared to QTA (analyte mass refers to a volume of 200 μl). For Bi, the linear range was the same for QTA and MMQTA (140 ng). With the exception of Bi, the tolerance limits for hydride-forming elements were improved more than 50% in comparison to the conventional QTA system, especially for the interferences of As, Sb and Se. However, for Sn as an interferent, no difference was observed in the determination of Se and Sb using the MMQTA system. The use of MMQTA-HG AAS complied with the relatively high sensitivity of conventional QTA and also provided better performance for interferences and the linear range of calibration.  相似文献   

20.
氢化物发生原子荧光光谱法测定磷酸中的砷   总被引:2,自引:0,他引:2  
采用HCl处理H3PO4试样,氢化物发生原于荧光光谱法测定As,对仪器条件、HCl酸度、预还原剂用量、还原剂用量、共存干扰进行了试验,方法的检出限为0.18ng/mL,测定精密度1.9%-3.0%,回收率为96.0%-98.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号