首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many well-established homogeneous separation free immunoassays rely on particulate label technologies. Particles generally contain a high concentration of the embedded label and they have a large surface area, which enables conjugation of a large amount of protein per particle. Eu(III)-chelate dyed nanoparticles have been successfully used as labels in heterogeneous and homogeneous immunoassays. In this study, we compared the characteristics of two homogeneous competitive immunoassays using either soluble Eu(III)-chelates or polystyrene particles containing Eu(III)-chelates as donors in a fluorescence resonance energy transfer based assay. The use of the particulate label significantly increased the obtained sensitized emission, which was generated by a single binding event. This was due to the extremely high specific activity of the nanoparticle label and also in some extent the longer Förster radius between the donor and the acceptor. The amount of the binder protein used in the assay could be decreased by 10-fold without impairing the obtainable sensitized emission, which subsequently led to improved assay sensitivity. The optimized assay using particulate donor had the lowest limit of detection (calculated using 3 × S.D. of the 0 nM standard) 50 pM of estradiol in the assay well, which was approximately 20-fold more sensitive than assays using soluble Eu(III)-chelates.  相似文献   

2.
Research in the field of immunoassays and labels used in the detection has been recently focused on particulate reporters, which possess very high specific activity that excludes the label as a sensitivity limiting factor. However, the large size and shape of the particulate labels may produce additional problems to immunoassay performance. The aim of this work was to study with two identical non-competitive two-site immunoassays whether up-converting phosphor (UCP) particles are comparable in performance with europium(III) chelate-dyed nanoparticles as particulate labels. In addition we strived to verify the common assumption of the photostability of up-converting phosphor particles supporting their potential applicability in imaging. Detection limits in two-site immunoassay for free prostate-specific antigen (free-PSA) were 0.53 ng L−1 and 1.3 ng L−1 using two different up-converting phosphors and 0.16 ng L−1 using europium(III) nanoparticle. Large size distribution and non-specific binding of up-converting phosphor particles caused assay variation in low analyte concentrations and limited the analytical detection limit. The non-specific binding was the major factor limiting the analytical sensitivity of the immunoassay. The results suggests the need for nanoscaled and uniformely sized UCP-particles to increace the sensitivity and applicability of up-converting phosphor particles. Anti-Stokes photoluminescence of up-converting phosphor particles did not photobleach when measured repeatedly, on the contrary, the time-resolved fluorescence of europium nanoparticles photobleached relatively rapidly.  相似文献   

3.
The present study describes the development of a quantitative miniaturized single microparticle immunoassay. The main objective of the study was to evaluate the performance of a miniature heterogeneous immunoassay on a single microparticle in respect to assay kinetics, volume, and sensitivity, binding capacity of microparticles and sensitivity using europium(III) nanoparticle labels. The performance of the single microparticle assay of prostate-specific antigen (PSA) was investigated using different-sized microparticles (60-920 μm in diameter) and microtiter well as a solid-phase. Equilibration time of the assay was shown to be dependent in a linear manner on surface-to-volume ratio, i.e. larger surface-to-volume translated to a faster reaction. However, no correlation between PSA binding capacity and equilibration time was observed in these kinetic studies. Only moderate improvement in assay kinetics was found when PSA binding capacity was increased on a microparticle. Using europium(III) nanoparticle labels, 107 nm in diameter, coated with streptavidin a detection sensitivity of 30 ng l−1 (0.1 amol) was achieved in 1 μl total assay volume per microparticle. This was 50-fold higher compared to the same assay performed with intrinsically fluorescent europium(III) labels.  相似文献   

4.
Microfabricated microfluidic devices provide useful platforms for sensing and conducting immunoassays for high throughput screening and drug discovery. In this paper, fluorescence polarization (FP) has been used as a technique for probing binding events within 500 μm and smaller microfluidic channels fabricated in polydimethylsiloxane. The binding of concanavalin A to a lectin-dextran and a glycoprotein-acetylcholinesterase has been used to demonstrate the homogeneous, ratioing format of fluorescence polarization for the quick and accurate determination of extremely low concentrations. Concentrations of concanavalin A in the 0.2-1.0 nmole range were detected within 500 μm channels. Polarization has also been used to sense for a polyaromatic hydrocarbon (PAH) within a microfluidic channel using binding to a TRITC-labeled antibody. Specifically, concentrations of pyrene in a 10-40 nmole range were sensed in 500 μm microfluidic channels. We have also demonstrated a simple pH sensor based on the change in anisotropy of a pH sensitive fluorophore-SNAFL. The ease of fabrication and measurement using such polarization-based devices make them extremely suitable for micro-sized sensors, assays and total analysis systems.  相似文献   

5.
The analytical potential of polystyrene (PS) spin-coated modified compact discs (CDs) surface as platforms for the development of microarray immunoassays is presented. The surface maintained the optical characteristics of compact discs, obtaining a transparent and smooth film polymer of 70 nm thickness, the track being read (λ 780 nm) without errors in a commercial CD reader/writer. The analytical capability of the methodology was demonstrated through an analysis of a neurotoxic compound (2560 spots per disc), reaching 0.08 μg L−1 as limit of detection. These figures demonstrate the enormous potential of using PS spin-coated compact discs in combination with CD players as an easy-to-operate and portable device to develop lab-on-a-disc analytical applications.  相似文献   

6.
Cortisol levels in body fluids are useful for monitoring the function of the pituitary-adrenal axis. Here, we established an “enzyme-linked immunometric assay” (a noncompetitive-type ELISA) for cortisol based on idiotype-anti-idiotype reactions. Six different anti-idiotype monoclonal antibodies that recognized the variable regions of a newly established anti-cortisol antibody were generated using hybridoma technology; these were two β-type and four α-type anti-idiotype antibodies, recognizing the paratope and framework regions, respectively. An immunometric assay was established using a combination of a selected α-type and a selected β-type antibody. The analyte (cortisol) was captured by an excess amount of anti-cortisol antibody immobilized on microplates, and the unoccupied paratope was saturated with the β-type antibody. Hapten-occupied anti-cortisol antibody, with less steric hindrance, was then selectively bound by the α-type antibody, labeled with biotin. The amount of biotin residue on the microplates was colorimetrically monitored using a peroxidase-labeled streptavidin. This assay had an approximately threefold higher sensitivity (detection limit: 90 pg = 248 fmol cortisol) than a competitive ELISA using the same anti-cortisol antibody, as well as a practical specificity for providing reasonable determination of normal urinary cortisol levels.  相似文献   

7.
One-step membrane-based competitive colloidal gold-based immunoassays in flow-through and lateral-flow formats for the rapid detection of carbaryl were developed. Nitro-cellulose membrane strip was separately coated with goat anti-rabbit IgG (control line) and carbaryl hapten-OVA conjugate (test line). Anti-carbaryl antibody labeled with colloidal gold particles was firstly incubated with carbaryl. A positive reaction as a result of the remaining antibody-gold conjugate combining with antigen coated on the membrane was obvious by visual detection, with detection limits for flow-through and lateral flow of 50 and l00 μg/L, respectively. The assay time for both tests was less than 5 min, suitable for rapid testing on-site.  相似文献   

8.
Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA – prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5 ng mL−1, 80 pg mL−1, and 800 fg mL−1 when arraying the PSA antibody, H117 at the concentration 15 μg mL−1, 35 μg mL−1, and 154 μg mL−1, respectively. We further investigated PSA spiked into human female serum in the range of 800 fg mL−1 to 500 ng mL−1. The microarray showed a LOD of 800 fg mL−1 and a dynamic range of 800 fg mL−1 to 80 ng mL−1 in serum spiked samples.  相似文献   

9.
Multiplex electrochemical detection of two DNA target sequences in one sample using enzyme-functionalized Au nanoparticles (AuNPs) as catalytic labels for was proposed. This DNA sensor was fabricated using a “sandwich” detection strategy, involving two kinds of capture probes DNA immobilized on glassy carbon electrode (GCE), and hybridization with target DNA sequences, which further hybridized with the reporter DNA loaded on the AuNPs. The AuNP contained two kinds of DNA sequences, one was complementary to the target DNA, while the other was noncomplementary to the target. The noncomplementary sequences were linked with horseradish peroxidase (HRP) and alkaline phosphatase (ALP), respectively. Enhanced detection sensitivity was obtained where the AuNPs carriers increased the amount of enzyme molecules per hybridization. Electrochemical signals were generated from the enzymatic products produced from the substrates catalyzed by HRP and ALP. Under optimal conditions, a 33-mer sequence could be quantified over the ranges from 1.5 × 10−13 to 5.0 × 10−12 M with a detection limit of 1.0 × 10−13 M using HRP-AuNP as labels, and a 33-mer sequence could be quantified over the ranges from 4.5 × 10−11 M to 1.0 × 10−9 M with a detection limit of 1.2 × 10−11 M using ALP-AuNP as labels.  相似文献   

10.
In this research, we combined ionic liquid-based dispersive liquid-liquid micro-extraction (IL-based DLLME) with stopped-flow spectrofluorometry (SFS) to evaluate the concentration of aluminum in different real samples at trace level. 1-Hexylpyridinium hexafluorophosphate [Hpy][PF6] ionic liquid and 8-hydroxyquinoline (oxine), which forms a highly fluorescent complex with Al3+, were chosen as the extraction solvent and chelating agent, respectively. The hydrophobic Al-oxine complex was extracted into the [Hpy][PF6] and separated from the aqueous phase. Then, the concentration of the enriched aluminum in the sediment phase was determined by SFS. Some effective parameters that influence the SFS signals and the micro-extraction efficiency, such as the suction and sending time, the concentration of the chelating agent, pH, the amount of the ionic liquid, the type of disperser solvent and diluting agent, ionic strength, extraction time, equilibration temperature and centrifugation time were investigated and optimized. In the optimum experimental conditions, the limit of detection (3 s) and enrichment factor were 0.05 μg L−1 and 100, respectively. The relative standard deviation (RSD) for six replicate determinations of 6 μg L−1 Al was 1.7%. The calibration graph using the pre-concentration system was linear in the range of 0.06-15 μg L−1 with a correlation coefficient of 0.9989. The developed method was validated by the analysis of certified reference materials and applied successfully to the determination of aluminum in several water, fruit juice and food samples.  相似文献   

11.
This paper proposes a method for the determination of lead in aluminum and magnesium antacids employing electrothermal atomic absorption spectrometry (ET AAS). The pyrolysis and atomization temperatures established during the optimization step were 700 and 2200 °C, respectively, using phosphate as the chemical modifier. Under these conditions, a characteristic mass of 25 pg, and limits of detection and quantification of 0.40 and 1.35 μg L−1, respectively were obtained. Some experiments demonstrated that the calibration can be performed employing the external calibration technique using aqueous standards. The precision expressed as relative standard deviation (RSD %) was 4.03% for an antacid sample with lead concentrations of 284.5 μg L−1. The proposed method was applied for the determination of lead in five antacid samples acquired in Salvador City, Brazil. The lead content was varied from 87 to 943 μg g−1. The samples were also analyzed after complete dissolution by inductively coupled plasma mass spectrometry (ICP-MS). No statistical difference was observed between the results obtained by both of the procedures performed.  相似文献   

12.
The β-lactam antibiotics, including penicillins, are the most important antimicrobial substances used for mastitis treatment. Consequently, this is also the most frequently occurring type of antibiotic residues in milk. Today, in addition to the traditional microbial inhibitor tests, rapid and sensitive receptor and immunoassays are used in residue control. Due to the limitations in throughput capacity of these tests, recent applications of automated biosensor technology in food analysis are of great interest.A surface plasmon resonance (SPR)-based biosensor (Biacore) was used to design an inhibition assay to detect β-lactam antibiotics in milk. A microbial receptor protein with carboxypeptidase activity was used as detection molecule. One advantage of using this receptor protein over antibodies that are more commonly used is that only the active, intact β-lactam structure is recognized, whereas most antibodies detect both active and inactive forms. In the presence of β-lactam antibiotics the formation of a stable complex between receptor protein and antibiotic inhibits the enzymatic activity of the protein. The decrease in enzymatic activity was measured using an antibody against the degraded substrate and penicillin G in milk samples was quantitatively determined. The limit of detection of the assay for penicillin G was determined to 2.6 μg kg−1 for antibiotic-free producer milk, which is below the European maximum residue limit (MRL) of 4 μg kg−1. The coefficient of variation at 4 μg kg−1 penicillin G, ranged between 7.3 and 16% on three different days.  相似文献   

13.
A simple and fast immunoaffinity method is proposed for the determination of gliadins for the first time using gold nanoparticles (AuNPs) as labels. The tracer used consists in a gliadin-AuNP conjugate prepared by the adsorption of gliadins onto the nanoparticle surface. Two AuNP sizes with diameters of 10 nm and 20 nm were assayed to compare the behaviour of the corresponding tracer in the assay. The method relies on the injection in a commercial Protein G column of a preincubated mixture containing gliadins, polyclonal anti-gliadin antibodies, and the gliadin-AuNP tracer. This approach allows the separation of free and bound tracer fractions without any additional elution step, and the direct measurement of the resonance light scattering intensity of the free tracer through the peak height of the immunochromatogram, which is proportional to the analyte concentration. The immunocolumn can be used up to 25 times without eluting and it can be regenerated for at least 20 times. The dynamic ranges of the calibration graphs and the detection limits are 0.5-15.0 and 1.5-15.0 μg mL−1 gliadins, and 0.2 μg mL−1 and 0.8 μg mL−1 gliadins, using 20-nm and 10-nm Au-NPs as labels, respectively. The precision, expressed as relative standard deviation, ranges between 2.7% and 2.9% using 20-nm AuNPs and 4% and 6.1% for 10-nm AuNPs. The method has been applied to the determination of the prolamin fraction in beer samples, obtaining recovery values in the range 71.2% and 101.7%.  相似文献   

14.
Nanoparticles containing thousands of fluorescent europium(III) chelates have a very high specific activity compared to traditional lanthanide chelate labels. It can be assumed that if these particles are used in a homogeneous assay as donors, multiple chelates can excite a single acceptor in turns and the energy transfer to the acceptor is increased. The principle was employed in an immunoassay using luminescent resonance energy transfer from a long lifetime europium(III) chelate-dyed nanoparticle to a short lifetime, near-infrared fluorescent molecule. Due to energy transfer fluorescence lifetime of the sensitised emission was prolonged and fluorescence could be measured using a time-resolved detection.A competitive homogeneous immunoassay for estradiol was created using 92 nm europium(III) chelate-dyed nanoparticle coated with 17β-estradiol specific recombinant antibody Fab fragments as a donor and estradiol conjugated with near-infrared dye AlexaFluor 680 as an acceptor. The density of Fab fragments on the surface of the particle influenced the sensitivity of the immunoassay. The optimal Fab density was reached when the entire surface of the particle participated in the energy transfer, but the areas where the energy was transferred to a single acceptor, did not overlap. We were able to detect estradiol concentrations down to 70 pmol l−1 (3×SD of a standard containing 0 nmol l−1 of E2) using a 96-well platform. In this study we demonstrated that nanoparticles containing lanthanide chelates could be used as efficient donors in homogeneous assays.  相似文献   

15.
The use of 3-indoxyl phosphate (3-IP) as an electrochemical substrate for ELISAs with voltammetric detection was investigated. Indirect measurements of alkaline phosphatase (AP) and horseradish peroxidase (HRP) activity in solution were carried out. Picomolar levels of both enzymes can be detected, which enables the design of electrochemical immunoassays using this substrate. The enzymatic turnover of the substrate gives indigo blue, insoluble in aqueous solutions. This product is easily converted into its soluble parent compound, indigo carmine (IC), by addition of fuming sulphuric acid to the reaction media. IC shows a reversible voltammetric peak at the formal potential of −0.15 V (versus Ag pseudo-reference electrode) when a screen-printed carbon electrode (SPCE) is used. The peak current of this process constitutes the analytical signal. Using this approach an ELISA assay to quantify pneumolysin (PLY, a toxin related to respiratory infections) was carried out using AP or HRP as enzymatic label. Calibration plots obtained are reported. 3-IP is demonstrated to be the first suitable substrate for the two most common enzyme labels used in immunoassays.  相似文献   

16.
The sequential injection (SIA) technique was applied for the on-line preparation of an “oil in water” microemulsion and for the determination of aluminum in new and used lubricating oils by electrothermal atomic absorption spectrometry (ET AAS) with Zeeman-effect background correction. Respectively, 1.0, 0.5 and 1.0 ml of surfactants mixture, sample and co-surfactant (sec-butanol) solutions were sequentially aspirated to a holding coil. The sonication and repetitive change of the flowing direction improved the stability of the different emulsion types (oil in water, water in oil and microemulsion). The emulsified zone was pumped to fill the sampling arm of the spectrometer with a sub-sample of 200 μl. Then, 10 μl of this sample solution were introduced by means of air displacement in the graphite tube atomizer. This sequence was timed to synchronize with the previous introduction of 15 μg of Mg(NO3)2 (in a 10 μl) by the spectrometer autosampler. The entire SIA system was controlled by a computer, independent of the spectrometer. The furnace program was carried out by employing a heating cycle in four steps: drying (two steps at 110 and 130 °C), pyrolisis (at 1500 °C), atomization (at 2400 °C) and cleaning (at 2400 °C). The calibration graph was linear from 7.7 to 120 μg Al l−1. The characteristic mass (mo) was 33.2 pg/0.0044 s and the detection limit was 2.3 μg Al l−1. The relative standard (RSD) of the method, evaluated by replicate analyses of different lubricating oil samples varied in all cases between 1.5 and 1.7%, and the recovery values found in the analysis of spiked samples ranged from 97.2 to 100.4%. The agreement between the observed and reference values obtained from two NIST Standard Certified Materials was good. The method was simple and satisfactory for determining aluminum in new and used lubricating oils.  相似文献   

17.
18.
In this work, a rapid, simple and efficient homogeneous liquid–liquid microextraction via flotation assistance (HLLME-FA) method was developed based on applying low density organic solvents without no centrifugation. For the first time, a special extraction cell was designed to facilitate collection of the low-density solvent extraction in the determination of four polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). The effect of different variables on the extraction efficiency was studied simultaneously using experimental design. The variables of interest in the HLLME-FA were selected as extraction and homogeneous solvent volumes, ionic strength and extraction time. Response surface methodology (RSM) was applied to investigate the optimum conditions of all the variables. Using optimized variables in the extraction process, for all target PAHs, the detection limits, the precisions and the linearity of the method were found in the range of 14–41 μg L−1, 3.7–10.3% (RSD, n = 3) and 50–1000 μg L−1, respectively. The proposed method has been successfully applied to the analysis of four target PAHs in the water samples, and satisfactory results were obtained.  相似文献   

19.
Ascorbic acid (AA) and dehydroascorbic acid (DHA) are small polar molecules difficult to be retained in conventional chromatographic RP systems. Hydrophilic interaction liquid chromatography (HILIC) using Obelisk R (100 × 3.2 mm, 5 μm, Sielc) analytical column and isocratic elution by ammonium acetate buffer pH 4.2 was found to be successful at this task, while other tested HILIC columns – Obelisk N (100 × 3.2 mm, 5 μm, Sielc) and Luna HILIC (100 × 3.0 mm, 3 μm, Phenomenex) were unsuccessful for the purposes of analysis. Charged aerosol detection (CAD) has recently become a new alternative universal detection system in HPLC, and was extremely convenient for the simultaneous analysis of AA and DHA without the need of subtraction approach and oxidation/reduction step. CAD response was found linear in defined range in spite of the fact that CAD is designated as non-linear detection method. A simple and fast HILIC-CAD method was applied for the analysis of pharmaceutical preparations containing AA. Method validation was performed including parameters of precision, accuracy, linearity, limit of detection and limit of quantitation (LOQ). The method was fast, accurate and precise for both detectors with LOQAA 5 μg/ml for UV detection and 10 μg/ml for CAD, respectively. DHA was detected only by CAD within tested concentration range with LOQDHA 1 μg/ml.  相似文献   

20.
Simple, easy to use and selective method of Al(III) sorption-spectroscopic (SS) determination was proposed. For this purpose, silica modified with tridecyloctadecylammonium chloride(SGII) using adsorption technique and glass slide modified with thin silica-poly(dimethyldiallyl-ammonium chloride) (SGI) composite film obtained by sol-gel technique were worked out. It was shown that lumogallion (LG) easily absorbs on SGI and SGII. Obtained sorbents SGIII and SGIV, respectively, were used for aluminum(III) determination by diffuse reflectance and spectrophotometric methods. The ranges of determination were (mg L−1): (0.08-0.54), sr ≤ 0.13, n = 4 for SGIII and (0.05-2.0), sr ≤ 0.11, n = 4 for SGIV. The detection limits (blank + 3σ) for aluminum were 70 and 30 μg L−1 using SGIII and SGIV, respectively, where σ is the standard deviation of blank estimation. The accuracy of the developed spectrophotometric method was examined by the determination of standard addition of aluminum in alcohol-free beverages. The relative error did not exceed 9%. SGIII can be regenerated by 0.05 M EDTANa2H2 solution and reused. SGIV was shown to be perspective for determination of aluminum in solution in the range of 0.01-0.13 mg L−1 by solid phase luminescent technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号