首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ZnO is a semiconductor photocatalyst widely applied in photodegradation of organic pollutants and in photoelectric conversion. ZnO exhibits low photocatalytic activity due to poor absorption in the visible region. In this work, a novel cobalt-induced electrochemical growth method was developed to synthesize cobalt-doped ZnO/rGO nanoparticles in an aqueous solution at room temperature. Cobalt-doped ZnO/rGO nanoparticles exhibited wider visible-light absorption band ranging from 400 nm to 700 nm due to cobalt doping. The surface structure of ZnO formed by the cobalt-induced electrochemical method without other ions is suitable for photocatalytic reactions. The cobalt-doped ZnO/rGO nanoparticles were found to exhibit in photodegradation and photo-electrochemical measurements and exhibited enhanced photocatalytic activity under visible-light irradiation.  相似文献   

2.
The conjugation between probe biomolecules and inorganic nanoparticles has been studied. Three different and biologically relevant proteins, bovine serum albumin (BSA), lysozyme (LSZ) and Ribonuclease A (RNAseA), have been selected as model systems because of their difference in size and isoelectric point. Zinc oxide nanoparticles, synthesized via sol–gel, have been thoroughly characterized by X-ray Photoelectron Spectroscopy, Scanning Electron Microscopy and X-ray Diffraction, and subsequently used as platforms for immobilization of the biomolecules. The interaction of the three proteins with the ZnO surface was performed in phosphate buffer solutions at pH 7.2 in order to mimic physiological fluids and was investigated through fluorescence experiments. The obtained results indicate that conjugation of BSA, LZS and RNAseA on the oxide nanoparticles was mostly dictated by the overall charge of the different proteins. Electrostatic bonds dominate the formation of the protein/ZnO conjugates, whereas the size of the proteins seems to play a negligible role under the adopted experimental conditions.  相似文献   

3.
本文以羟丙基纤维素(HPC)作为分散剂,运用沉淀法制备出了粒径均匀的ZnO颗粒.通过透射电子显微镜(TEM),X射线衍射(XRD),紫外可见光吸收光谱,光致发光谱(PL)对ZnO进行了性能表征,并探讨了其形成机理及制备中的影响因素.利用纳米ZnO作为光催化剂对有机染料罗丹明B进行了光降解实验,实验结果表明,此方法制备的ZnO具有良好的光催化性能,有望在治理环境污染等领域具有良好的应用.  相似文献   

4.
Method of chemical precipitation from aqueous solutions was used to cover the surface of polycrystalline ZnO nanotubes with a nanostructured CdS layer. The thus synthesized CdS/ZnO composite material was studied by the methods of X-ray diffraction analysis, electron microscopy, and optical spectroscopy. The fundamental time-related aspects of the process of CdS formation on the ZnO surface were examined. It was found that the amount of deposited CdS nanoparticles is independent of the deposition duration. The morphological specific features of ZnO nanotubes are preserved upon a prolonged keeping of ZnO in solution. The photocatalytic activity of CdS/ZnO under visible and UV light was examined in the reaction of hydroquinone oxidation. A possible mechanism of how the CdS/ZnO composite is formed in an aqueous solution in the course of growth of a layer constituted by CdS nanoparticles on the surface of ZnO nanotubes is suggested on the basis of the experimental data. It is demonstrated that the chemical-precipitation method can be used to obtain surface-active composite materials that are photoactive in the visible spectral range.  相似文献   

5.
We present composition-controlled synthesis of ZnO-Zn composite nanoparticles by laser ablation of a zinc metal target in pure water or in aqueous solution of sodium dodecyl sulfate (SDS). By SDS concentration, composition and size of the nanoparticles can be controlled in a wide range. Relative amounts of the components Zn and ZnO, the particle size, and the microstructure can evolve with SDS concentration in solution. High SDS concentration corresponds to high relative amount of Zn nanoparticles existing as the core in the core/shell nanostructures, whereas low SDS concentration leads to high ZnO amount. This was explained by a dynamic mechanism on the basis of the competition between aqueous oxidation and SDS capping protection. Correspondingly, optical absorption spectra evolve from the excitonic peak of ZnO (about 350 nm) to the Zn surface plasmon resonance (about 242 nm) with rise of SDS concentration. A blue (about 450 nm) photoluminescence was observed in the obtained ZnO nanoparticles, which was attributed to existence of interstitial zinc in ZnO lattices. This study has revealed that laser ablation of active metal in liquid media is an appropriate method to synthesize a series of metal oxide semiconductor-metal composite nanoparticles with controlled composition and size.  相似文献   

6.
Looking at its vast range of applications, nanostructured ZnO can be considered as a key technological material. Simple and ecological production techniques for this and other nanostructured materials can boost the detection of their unusual properties. In this context water-based wet chemical synthesis routes for nanostructured ZnO are explored in this study. The advantages and disadvantages of controlled double-jet precipitation, microemulsion preparation, hydrothermal synthesis and an aqueous solution-gel route are described for the formation of (doped) ZnO nanoparticles. The influence of the synthesis parameters on the particle size, size distribution and degree of agglomeration of the particles is reported. Thin films are prepared by chemical solution deposition from aqueous solution. The heat treatment profile and the precursor composition are seen to largely control the density, the grain size and the degree of preferential c-axis orientation.  相似文献   

7.
A facile hydrothermal method to synthesize flower-like Sn-doped ZnO (FLSn-ZnO) nanostructures is described. The obtained hierarchical architectures of FLSn-ZnO are found to be assembled with abundant regular-shaped nanosheets and nanoparticles. A possible formation mechanism is proposed on the base of a series of control experiments. The tests show that FLSn-ZnO architectures exhibit higher photocatalytic activity in the degrading Rhodamine B and tetracycline aqueous solution than pure ZnO under UV-light irradiation. And photocurrent response and photoluminescence of ZnO and FLSn-ZnO demonstrates that in photocatalytic performance, the latter is higher.  相似文献   

8.
We report herein on the oriented growth of ZnO crystals on magnetite nanoparticles. The ZnO crystals were grown by hydrolyzing a supersaturated aqueous solution of zinc nitrate. The seeds for the growth were magnetite nanoparticles with a diameter of 5.7 nm and a narrow size distribution. Hollowed ZnO hexagons of 0.15 microm width and 0.5 microm length filled with Fe(3)O(4) particles were obtained. HR-TEM (high-resolution transmission electron microscopy) and selected-area EDS (energy-dispersive spectroscopy) show that the nanoparticles are homogenously spread in the ZnO tubes. Zeta potential measurements were employed to understand the relationship between the nanoparticles and the oriented growth of the ZnO crystals. The results show that the surfactants induced the directional growth of the ZnO crystals.  相似文献   

9.
采用化学沉淀法制备ZnO微球,利用柠檬酸三钠(TCD)避光还原硝酸银在ZnO表面沉积银粒子制备Ag/ZnO复合材料.利用XRD、SEM、TEM、EDS、FTIR、UV-vis DRS、PL、BET等对Ag/ZnO的结构、组分、形貌及光谱性质进行了表征,通过紫外及可见光照降解甲基橙溶液评价样品的光催化性能.结果表明:ZnO纳米微球是由ZnO纳米片相互交错构筑而成的具有丰富孔道的分级结构,Ag纳米粒子均匀沉积在ZnO纳米片上.Ag的沉积显著增加了ZnO的可见光吸收,猝灭了ZnO荧光,提高了ZnO催化活性.  相似文献   

10.
不同形貌ZnO纳米粒子的超声化学法制备与表征   总被引:10,自引:0,他引:10  
One-dimensional ZnO nanorods and shuttle-like ZnO nanoparticles have been successfully achieved by ultrasonic irradiation of Zn (CH3COO)2 aqueous solution and Zn-NH3 complexcs solution. The obtained ZnO nanoparticles have been characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electronic diffraction (SAED). And the formative mechanism of the prepared different morphological ZnO nanoparticles is also discussed under ultrasonic irradiation.  相似文献   

11.
以离子型纤维素醚羧甲基纤维素(CMC)的水溶液为反应介质,制备[Zn4CO3(OH)6]CMC水凝胶,洗涤、干燥后经不同温度煅烧前驱物得到ZnO纳米粒子。通过XRD、SEM、TEM、TG-DSC及FT-IR等测试技术对产物的组成、粒径及形态进行表征,研究了CMC对前驱物及ZnO形态和尺寸的影响。结果表明,由于CMC加入对煅烧前驱物产生的空间位阻作用,所制得纳米ZnO粒子粒度分布均匀、分散性好、不易团聚、粒子的平均粒径<20 nm。利用UV-V is测试了纳米ZnO的光吸收性能,所得的纳米ZnO在200~400 nm具有较强的吸收性。  相似文献   

12.
Chemical bath deposition (CBD) is an inexpensive and reproducible method for depositing ZnO nanowire arrays over large areas. The aqueous Zn(NO(3))(2)-hexamethylenetetramine (HMTA) chemistry is one of the most common CBD chemistries for ZnO nanowire synthesis, but some details of the reaction mechanism are still not well-understood. Here, we report the use of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to study HMTA adsorption from aqueous solutions onto ZnO nanoparticle films and show that HMTA does not adsorb on ZnO. This result refutes earlier claims that the anisotropic morphology arises from HMTA adsorbing onto and capping the ZnO {10 1 0} faces. We conclude that the role of HMTA in the CBD of ZnO nanowires is only to control the saturation index of ZnO. Furthermore, we demonstrate the first deposition of ZnO nanowire arrays at 90 °C and near-neutral pH conditions without HMTA. Nanowires were grown using the pH buffer 2-(N-morpholino)ethanesulfonic acid (MES) and continuous titratation with KOH to maintain the same pH conditions where growth with HMTA occurs. This semi-batch synthetic method opens many new opportunities to tailor the ZnO morphology and properties by independently controlling temperature and pH.  相似文献   

13.
Zinc sulfide (ZnS) nanoparticles were prepared by homogeneous hydrolysis of zinc sulfate and thioacetamide (TAA) at 80 degrees C. After annealing at a temperature above 400 degrees C in oxygen atmosphere, zinc oxide (ZnO) nanoparticles were obtained. The ZnS and ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and Brunauer-Emmett-Teller (BET)/Barrett-Joyner-Halenda (BJH) methods were used for surface area and porosity determination. The photocatalytic activity of as-prepared zinc oxide samples was determined by decomposition of Orange II dye in aqueous solution under UV irradiation of 365 nm wavelength. Synthesized ZnO were evaluated for their non-photochemical degradation ability of chemical warfare agents to nontoxic products.  相似文献   

14.
A new and simple direct precipitation method assisted with ultrasonic agitation was proposed for the preparation of spherical ZnO nanoparticles. The size of the ZnO nanoparticles, 10 nm to 85 nm, was tuned through controlling the calcination temperature and changing the ratio of the reactants. The resonant light scattering (RLS) of the ZnO nanoparticles dispersed/suspended in aqueous solution of Triton X-100 was studied under room temperature. It was found that the ZnO nanoparticles of different size or concentration all have a characteristic RLS peak at 387 nm. Under optimal conditions, the RLS intensity was proportional to the ZnO concentration in the range of 7.3 × 10?8–1 × 10?4 mol L?1, while the cubic root of the RLS intensity was found to be proportional to the size of ZnO nanoparticles. Further, the quantitative relationship of the size of the ZnO nanoparticles versus the calcination temperature was derived, and this could be used to forecast/control the nano-size in the nano-ZnO preparation.  相似文献   

15.
In situ monitoring of biomolecular recognition, especially at surfaces, still presents a significant technical challenge. Electron paramagnetic resonance (EPR) of biomolecules spin‐labeled with nitroxides can offer uniquely sensitive and selective insights into these processes, but new spin‐labeling strategies are needed. The synthesis and study of a bromoacrylaldehyde spin label (BASL), which features two attachment points with orthogonal reactivity is reported. The first examples of mannose and biotin ligands coupled to aqueous carboxy‐functionalized gold nanoparticles through a spin label are presented. EPR spectra were obtained for the spin‐labeled ligands both free in solution and attached to nanoparticles. The labels were recognized by the mannose‐binding lectin, Con A, and the biotin‐binding protein avidin‐peroxidase. Binding gave quantifiable changes in the EPR spectra from which binding profiles could be obtained that reflect the strength of binding in each case.  相似文献   

16.
ZnO and different atomic percentages of Cu-doped ZnO nanocrystallites have been prepared by aqueous thermolysis method using Glycine as a fuel and encapsulating agent. Mechanism and formation of intermediate products have been given for the first time. All the findings given are for samples annealed at 800?°C. XRD of nanocrystalline ZnO and Cu?CZnO has been indexed to hexagonal wurtzite structure. Influence of temperature on thermal properties of gel precursor and Cu-doped ZnO nanoparticles have been investigated using thermogravimetric and differential thermal analysis. Accordingly, samples have been annealed at different temperatures. Infrared studies revealed formation of Cu?CZnO nanoparticles and removal of organic matter at higher temperature.  相似文献   

17.
In this work, hierarchical ZnO particles were prepared using a biomineralization strategy at room temperature in the presence of peptides acidified from spider silk proteins. A mechanism of the mineralization of the ZnO particles was that the affinity of original ZnO nanoparticles and zinc ions in the peptide chains played an important role in controlling the biocrystallizing formation of the pore ZnO particles. The intensity of their visible green luminescence was enhanced with increases of the mineralization time due to the porous surface defects. The hierarchical ZnO materials with biomolecules will facilitate their photoluminescence spectra applications as biosensors or optoelectronic nanodevices in the future, when covalently coupled with peptides or other biomolecules to achieve patterned growth over large areas of substrate.  相似文献   

18.
A new facile method using 2-fluoro-1-methylpyridinium toluene-4-sulfonate (FMP) for activating polymeric hydroxyl groups has recently been developed (Refs. 1–2). Such activated polymers are useful for immobilization of enzymes, antibodies and other biomolecules and for affinity matrix development. The activation method involves reacting, at room temperature, the polymer with FMP in the presence of a tertiary amine for 0.5 to 1 hour. The activated hydroxyls react readily with nucleophiles, such as amino or thiol ligands at pH 5–10. The resulting linkages between the ligand and the polymer are respectively stable secondary amine and thioether bonds. The activated polymer remains active and usable for several months when stored at 4°C in either an acidic aqueous solution or an inert anhydrous organic solvent. The “half-life” of the activated groups in non-nucleophilic buffer solution varies from 10 to 300 hours in the pH range of 10 to 6, being most stable at low pH. Both primary and secondary hydroxyl groups of different polymers were facilely activated and shown to react readily with nucleophilic groups of biomolecules. Furthermore, FMP provides a convenient handle for the synthesis of unique conjugates consisting of FMP and a guiding molecule. These conjugates function as an activator of the hydroxyl group of a solid support as well as a molecular guide which orients the position of the ligand to be immobilized. The conjugates make it possible to immobilize ligands in an affinity-directed way.  相似文献   

19.
In this paper, we describe an effective method in which ZnO nanoparticles were prepared through the rapid precipitation transformation reaction in aqueous solution of ZnSO4 and NaOH with octadecanol phosphate (ODP) as a modifying agent. From the study on the surface and the interface, ZnO nanoparticles modified by ODP exhibited small size, pore structure, good dispersion, and hydrophobicity. The wide variety of surface wettability can be achieved by changing the preparation parameters. The research offers a simple and effective approach to prepare ZnO filler in mild condition and enhances interfacial compatibility between ZnO powders and matrixes by treating the surface with certain capping molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, electrochemical detection of molinate herbicide was studied by developing a novel sensor based on carbon paste incorporated with zinc oxide (ZnO) nanoparticles using cyclic (CV) and square wave voltammetric (SWV) techniques. Molinate exhibited one well resolved peak at pH of 3.0 phosphate buffer solution (PBS), which was irreversible. The lowest possible detection limit of 1.0×10?8 M was achieved in the concentration range of 0.002 μM to 0.25 μM. The modifying ability of ZnO nanoparticles was responsible for such a low level sensing in water and soil samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号