首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely believed that small gold clusters supported on an oxide surface and adsorbed at the site of an oxygen vacancy are negatively charged. It has been suggested that this negative charge helps a gold cluster adsorb oxygen and weakens the O-O bond to make oxidation reactions more efficient. Given the fact that an oxygen vacancy is electron rich and that Au is a very electronegative element, the assumption that the Au cluster will take electron density from the vacancy is plausible. However, the density functional calculations presented here show that the situation is more complicated. The authors have used the Bader method to examine the charge redistribution when a Aun cluster (n=1-7) binds next to or at an oxygen vacancy on rutile TiO2(110). For the lowest energy isomers they find that Au1 and Au3 are negatively charged, Au5 and Au7 are positively charged, and Au2, Au4, and Au6 exchange practically no charge. The behavior of the Aun isomers having the second-lowest energy is also unexpected. Au2, Au3, Au5, and Au7 are negatively charged upon adsorption and very little charge is transferred when Au4 and Au6 are adsorbed. These observations can be explained in terms of the overlap between the frontier molecular orbitals of the gold cluster and the eigenstates of the support. Aun with even n becomes negatively charged when the lowest unoccupied molecular orbital has a lobe pointing in the direction of the oxygen vacancy or towards a fivefold coordinated Ti (5c-Ti) located in the surface layer; otherwise it stays neutral. Aun with odd n becomes negatively charged when the singly occupied molecular orbital has a lobe pointing in the direction of a 5c-Ti located at the vacancy site or in the surface layer, otherwise it donates electron density into the conduction band of rutile TiO2(110) becoming positively charged.  相似文献   

2.
采用基于密度泛函理论的第一性原理方法系统地研究了Au12M(M=Na,Mg,Al,Si,P,S,Cl)团簇的结构、稳定性和电子性质.对团簇的平均结合能、镶嵌能、垂直离化势、最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)的能级差、电荷布居分析、自然键轨道(NBO)进行了计算和讨论.对于Au12M(M=Na,Mg,Al)团簇,它们形成了内含M原子的最稳定的笼状结构.然而对于Au12M(M=Si,P,S,Cl)团簇,它们却形成了以M元素为顶点的稳定锥形结构.在这些团簇中发现Au12S团簇相对是最稳定的,这是由于Au12S团簇形成了稳定的满壳层的电子结构.自然电荷布居分析表明:对于所有的Au12M(M=Na,Mg,Al,Si,P,S,Cl)团簇电荷总是从Au原子转向M原子.自然键轨道和HOMO分析表明Au12M团簇中发生了Au原子的s-d轨道和M原子的p轨道间的杂化现象.  相似文献   

3.
The authors present theoretical results describing the adsorption of H2 and H2S molecules on small neutral and cationic gold clusters (Au(n)((0/+1)), n=1-8) using density functional theory with the generalized gradient approximation. Lowest energy structures of the gold clusters along with their isomers are considered in the optimization process for molecular adsorption. The adsorption energies of H2S molecule on the cationic clusters are generally greater than those on the corresponding neutral clusters. These are also greater than the H2 adsorption energies on the corresponding cationic and neutral clusters. The adsorption energies for cationic clusters decrease with increasing cluster size. This fact is reflected in the elongations of the Au-S and Au-H bonds indicating weak adsorption as the cluster grows. In most cases, the geometry of the lowest energy gold cluster remains planar even after the adsorption. In addition, the adsorbed molecule gets adjusted such that its center of mass lies on the plane of the gold cluster. Study of the orbital charge density of the gold adsorbed H2S molecule reveals that conduction is possible through molecular orbitals other than the lowest unoccupied molecular orbital level. The dissociation of the cationic Au(n)SH2+ cluster into Au(n)S+ and H2 is preferred over the dissociation into Au(m)SH2+ and Au(n-m), where n=2-8 and m=1-(n-1). H2S adsorbed clusters with odd number of gold atoms are more stable than neighboring even n clusters.  相似文献   

4.
The candidate structures for the ground-state geometry of the Al(7)M (M = Li, Cu, Ag, and Au) clusters are obtained within the spin-polarized density functional theory. Absorption energy, vertical ionization potential, vertical electron affinity, and the energy gap between the highest occupied molecular orbital (HOMO) level and the lowest unoccupied molecular orbital (LUMO) level have been calculated to investigate the effects of doping. Doping with Ag or Au can lead to a large HOMO-LUMO gap, low electron affinity, and increased ionization potential of Al(7) cluster. In the lowest-energy structure of the Al(7)Au cluster, the Al atom binding to the Al(6)Au acts monovalent and the other six Al atoms are trivalent. Thus, the Al(7)Au cluster has 20 valence electrons, and its enhanced stability may be due to the electronic shell closure effect.  相似文献   

5.
The higher anti-human immunodeficiency virus activity of a symmetrical 2,2′-disubstitued derivative of diphenyl disulfide (DPDS) has been explained by the lower energy of the lowest unoccupied molecular orbital (LUMO), resulted from a better hydrogen bond stabilization of the σ*SS bond orbital (BO). This conclusion entails the participation of σ*SS BO in constructing the LUMO. The higher content of σ*SS BO, compared to π*CC BOs of phenyl groups, in LUMO of DPDS has been found through analysis of the LUMO of DPDS expanded in the BO space. The high content of σ*SS BO (%σ*SS) in the LUMO of DPDS has laid the foundation for the formation of σ-type radical anion intermediate in the stepwise reductive cleavage of disulfide bond in the symmetrical 4,4′-disubstitued DPDS derivatives. For the nine 4,4′-disubstituted DPDS-derivatives under reductive cleavage studies, the increasing %σ*SS in the LUMOs is parallel to the increasing value of inner reorganization energy.  相似文献   

6.
We use density functional theory to examine the electronic structure of small Au(n) (n=1-7) clusters, supported on a rutile TiO(2)(110) surface having oxygen vacancies on the surface (a partially reduced surface). Except for the monomer, the binding energy of all Au clusters to the partially reduced surface is larger by approximately 0.25 eV than the binding energy to a stoichiometric surface. The bonding site and the orientation of the cluster are controlled by the shape of the highest occupied molecular orbitals (HOMOs) of the free cluster (free cluster means a gas-phase cluster with the same geometry as the supported one). The bond is strong when the lobes of the HOMOs overlap with those of the high-energy states of the clean oxide surface (i.e., with no gold) that have lobes on the bridging and the in-plane oxygen atoms. In other words, the cluster takes a shape and a location that optimizes the contact of its HOMOs with the oxygen atoms. Fivefold coordinated Ti atoms located at a defect site (5c-Ti(*)) participate in the binding only when a protruding lobe of the singly occupied molecular orbital (for odd n) or the lowest unoccupied molecular orbital (for even n) of the free Au(n) cluster points toward a 5c-Ti(*) atom. The oxygen vacancy influences the binding energy of the clusters (except for Au(1)) only when they are in direct contact with the defect. The desorption energy and the total charge on clusters that are close to, but do not overlap with, the vacancy differ little from the values they have when the cluster is adsorbed on a stoichiometric surface. The behavior of Au(1) is rather remarkable. The atom prefers to bind directly to the vacancy site with a binding energy of 1.81 eV. However, it also makes a strong bond (1.21 eV) with any 5c-Ti atom even if that atom is far from the vacancy site. In contrast, the binding of a Au monomer to the 5c-Ti atom of a surface without vacancies is weak (0.45 eV). The presence of the vacancy activates the 5c-Ti atoms by populating states at the bottom of the conduction band. These states are delocalized and have lobes protruding out of the surface at the location of the 5c-Ti atoms. It is the overlap of these lobes with the highest orbital of the Au atom that is the major reason for the bonding to the 5c-Ti atom, no matter how far the latter is from the vacancy. The energy for breaking an adsorbed cluster into two adsorbed fragments is smaller than the kinetic energy of the mass-selected clusters deposited on the surface in experiments. However, this is not sufficient for breaking the cluster upon impact with the surface, since only a fraction of the available energy will go into the reaction coordinate for breakup.  相似文献   

7.
Two popular models of the gold-4,4 bipyridine (44BPD)-gold molecular junction, i.e., the direct contact of the 44BPD molecule with the Au(1 1 1) surface and the intermediary contact through one extra gold atom on each side, were studied using density functional theory calculations under periodic boundary conditions. The relative position of the Fermi level is changed by the extra gold atom from well below the LUMO (lowest unoccupied molecular orbital) of the 44BPD molecule in the direct contact model to within the energy range of the LUMO in the intermediary contact model, indicating that the local structure of the contact can significantly affect the conducting characteristics of the junction. The dependence of the molecule–electrode interaction on the interface structure was also investigated in details.  相似文献   

8.
Elucidating the chemisorption properties of CO on gold clusters is essential to understanding the catalytic mechanisms of gold nanoparticles. Gold hexamer Au(6) is a highly stable cluster, known to possess a D(3)(h) triangular ground state structure with an extremely large HOMO-LUMO gap. Here we report a photoelectron spectroscopy (PES) and quasi-relativistic density functional theory (DFT) study of Au(6)-CO complexes, Au(6)(CO)(n)(-) and Au(6)(CO)(n) (n = 0-3). CO chemisorption on Au(6) is observed to be highly unusual. While the electron donor capability of CO is known to decrease the electron binding energies of Au(m)(CO)(n)(-) complexes, CO chemisorption on Au(6) is observed to have very little effect on the electron binding energies of the first PES band of Au(6)(CO)(n)(-) (n = 1-3). Extensive DFT calculations show that the first three CO successively chemisorb to the three apex sites of the D(3)(h) Au(6). It is shown that the LUMO of the Au(6)-CO complexes is located in the inner triangle. Thus CO chemisorption on the apex sites (outer triangle) has little effect on this orbital, resulting in the roughly constant electron binding energies for the first PES band in Au(6)(CO)(n)(-) (n = 0-3). Detailed molecular orbital analyses lead to decisive information about chemisorption interactions between CO and a model Au cluster.  相似文献   

9.
To extend the metal cluster size used in interfacing between bulk metals and molecules in ab initio studies of molecular electronics and chemisorption, a reduced size atomic orbital basis set for the gold atom has been generated. Based on the SKBJ relativistic effective core potential set, the three component 5d Gaussian orbital basis set is completely contracted. Comparisons between the full and reduced basis set in Au atom clusters and cluster complexes for geometry, bond distances, dipole moments, atomic charges, spin, bond dissociation energies, lowest energy harmonic frequencies, electron affinities, ionization energies, and density of states distributions show the contracted set to be a viable replacement for the full basis set. This result is obtained using both the B3LYP and BPW91 exchange-correlation potentials in density functional theory.  相似文献   

10.
Results describing the interaction of a single sulfur atom with cationic gold clusters (Au(n) (+), n=1-8) using density functional theory are described. Stability of these clusters is studied through their binding energies, second order differences in the total energies, fragmentation behavior, and atom attachment energies. The lowest energy structures for these clusters appear to be three dimensional right from n=3. In most cases the sulfur atom in the structure of Au(n)S(+) is observed to displace the gold atom siting at the peripheral site of the Au(n) (+) cluster. The dissociation channels of Au(n)S(+) clusters follow the same trend as Au(n) (+) cluster, based on the even/odd number of gold atoms in the cluster, with the exception of Au(3)S(+). This cluster dissociates into Au and Au(2)S(+), signifying the relative stability of Au(2)S(+) cluster regardless of having an odd number of valence electrons. Clusters with an even number of gold atoms dissociate into Au and Au(n-1)(S)(+) and clusters with an odd number of gold atoms dissociate into Au(2) and Au(n-2)(S)(+) clusters. An empirical relation is found between the conduction molecular orbital and the number of atoms in the Au(n)S(+) cluster.  相似文献   

11.
Interactions of α‐D ‐glucose with gold, silver, and copper metal clusters are studied theoretically at the density functional theory (CAM‐B3LYP) and MP2 levels of theory, using trimer clusters as simple catalytic models for metal particles as well as investigating the effect of cluster charge by studying the interactions of cationic and anionic gold clusters with glucose. The bonding between α‐D ‐glucose and metal clusters occurs by two major bonding factors; the anchoring of M atoms (M = Cu, Ag, and Au) to the O atoms, and the unconventional M…H? O hydrogen bond. Depending on the charge of metal clusters, each of these bonds contributes significantly to the complexation. Binding energy calculations indicate that the silver cluster has the lowest and gold cluster has the highest affinity to interact with glucose. Natural bond orbital analysis is performed to calculate natural population analysis and charge transfers in the complexes. Quantum theory of atoms in molecules was also applied to interpret the nature of bonds. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Thiocyanate (SCN) adsorption on an Au electrode is examined using surface-enhanced Raman scattering (SERS) measurements, along with detailed density functional theory (DFT) calculations. Both the calculation and the spectroscopic measurements show that three different geometries are adopted by SCN adsorption in the potential region studied (0.0 V 相似文献   

13.
We present an analysis of the electronic structure of C60 adsorbed on a vicinal Au(111) surface at different fullerene coverages using photoemission, x-ray absorption, and scanning tunneling microscopy/spectroscopy (STS). STS provides a straightforward determination of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels with respect to the Fermi energy. At C60 coverages of 0.5 and 1 ML a 2.7 eV wide HOMO-LUMO gap is found. The near-edge x-ray absorption fine structure (NEXAFS) spectrum for the 0.5 ML C60 nanomesh structure displays a significant intensity at the low energy side of the LUMO exciton peak, which is explained as due to absorption into HOMO-LUMO gap states localized at individual C60 cluster edges. From 0.5 to 1 ML we observe a rigid shift of the HOMO-LUMO peaks in the STS spectra and an almost complete quenching of the gap states feature in NEXAFS.  相似文献   

14.
First-principle density functional theory is used for studying the anion gold clusters doped with magnesium atom. By performing geometry optimizations, the equilibrium geometries, relative stabilities, and electronic and magnetic properties of [Au(n)Mg]? (n = 1-8) clusters have been investigated systematically in comparison with pure gold clusters. The results show that doping with a single Mg atom dramatically affects the geometries of the ground-state Au(n+1)? clusters for n = 2-7. Here, the relative stabilities are investigated in terms of the calculated fragmentation energies, second-order difference of energies, and highest occupied?lowest unoccupied molecular orbital energy gaps, manifesting that the ground-state [Au(n)Mg]? and Au(n+1)? clusters with odd-number gold atoms have a higher relative stability. In particular, it should be noted that the [Au?Mg]? cluster has the most enhanced chemical stability. The natural population analysis reveals that the charges in [Au(n)Mg]? (n = 2-8) clusters transfer from the Mg atom to the Au frames. In addition, the total magnetic moments of [Au(n)Mg]? clusters exhibit an odd-even oscillation as a function of cluster size, and the magnetic effects mainly come from the Au atoms.  相似文献   

15.
The dopant and size-dependent propene adsorption on neutral gold (Aun) and yttrium-doped gold (Aun−1Y) clusters in the n=5–15 size range are investigated, combining mass spectrometry and gas phase reactions in a low-pressure collision cell and density functional theory calculations. The adsorption energies, extracted from the experimental data using an RRKM analysis, show a similar size dependence as the quantum chemical results and are in the range of ≈0.6–1.2 eV. Yttrium doping significantly alters the propene adsorption energies for n=5, 12 and 13. Chemical bonding and energy decomposition analysis showed that there is no covalent bond between the cluster and propene, and that charge transfer and other non-covalent interactions are dominant. The natural charges, Wiberg bond indices, and the importance of charge transfer all support an electron donation/back-donation mechanism for the adsorption. Yttrium plays a significant role not only in the propene binding energy, but also in the chemical bonding in the cluster-propene adduct. Propene preferentially binds to yttrium in small clusters (n<10), and to a gold atom at larger sizes. Besides charge transfer, relaxation also plays an important role, illustrating the non-local effect of the yttrium dopant. It is shown that the frontier molecular orbitals of the clusters determine the chemical bonding, in line with the molecular-like electronic structure of metal clusters.  相似文献   

16.
金钯二元小团簇的几何结构与电子性质   总被引:1,自引:0,他引:1  
在UBP86/LANL2DZ和UB3LYP/def2-TZVP水平下详细研究了AumPdn(m+n≤6)团簇的几何结构和电子性质.阐明了团簇的结构特征、平均结合能、垂直电离势、垂直电子亲和能、电荷转移以及成键特征.除单取代混合团簇(AunPd和AuPdn,n=5或6)外,五和六原子混合团簇中钯原子趋于聚集到一起形成Pdcore,金原子分布在Pdcore周围形成PdcoreAushell结构.含一个和两个钯原子团簇的电子性质与纯金团簇类似,呈现一定奇偶振荡.混合团簇的电子性质,如最高占据分子轨道(HOMO),最低未占据分子轨道(LUMO),垂直电离势,垂直电子亲和能,Fermi能级和化学硬度等均与团簇空间结构和金、钯原子数之比直接相关.混合团簇中存在钯原子到金原子间的电荷转移,表明团簇中存在明显金钯间成键作用.分析团簇的电荷分布、前线轨道和化学硬度表明,金钯混合团簇对小分子如O2、H2和CO等的反应活性要强于纯金团簇.  相似文献   

17.
The structure-property relationship of diarylethene (DAE)-derivative molecular isomers, which involve ring-closed and ring-open forms, is investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Molecular junctions are formed by the isomers connecting to Au(111) electrodes through flanked pyridine groups. The difference in electronic structures caused by different geometry structures for the two isomers, particularly the interatomic alternative single bond and double bond of the ring-closed molecule, contributes to the vastly different low-bias conductance values. The lowest unoccupied molecular orbital (LUMO) of the isomers is the main channel for electron transport. In addition, more electrons transferred to the ring-closed molecular junction in the equilibrium condition, thereby decreasing the LUMO energy to near the Fermi energy, which may contribute to a larger conductance value at the Fermi level. Our findings are helpful for understanding the mechanism of low-bias conductance and are conducive to the design of high-performance molecular switching based on diarylethene or diarylethene-derivative molecules.  相似文献   

18.
Density functional theory and CASSCF calculations have been used to determine equilibrium geometries and vibrational frequencies of metal-capped one-dimensional pi-conjugated complexes (H3P)Au(C[triple chemical bond]C)(n)(Ph) (n = 1-6), (H3P)Au(C[triple chemical bond]CC6H4)(C[triple chemical bond]CPh), and H3P--Au(C[triple chemical bond]CC6H4)C[triple chemical bond]CAu--PH3 in their ground states and selected low-lying pi(pi)* excited states. Vertical excitation energies for spin-allowed singlet-singlet and spin-forbidden singlet-triplet transitions determined by the time-dependent density functional theory show good agreement with available experimental observations. Calculations indicate that the lowest energy 3(pi(pi)*) excited state is unlikely populated by the direct electronic excitation, while the low-lying singlet and triplet states, slightly higher in energy than the lowest triplet state, are easily accessible by the excitation light used in experiments. A series of radiationless transitions among related excited states yield the lowest 3(pi(pi)*) state, which has enough long lifetimes to exhibit its photochemical reactivities.  相似文献   

19.
Examined in this paper is the role of the metal electrode influencing the structure and electronic properties of semiconducting carbon nanotubes near the interface at low bias. Specifically, we present quantum-chemical calculations of finite sections of a (8,0) semiconducting single wall nanotube contacted with gold and palladium clusters. The calculations at the density functional level of theory, which included full geometry optimizations, indicate the formation of bonds between the metal atoms of the electrode and the carbon atoms of the nanotube. The local work function of the metal electrode can be expected to exhibit significant variations as a result of this bond formation. Compared to the gold-contacted nanotubes, the palladium-contacted nanotubes have a small but interesting increase in both length and diameter. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the gold-contacted nanotube are shown localized at the edges. In contrast, the HOMO and LUMO of the palladium-contacted nanotube are extended over the entire nanotube and the metal cluster contacted to it, providing thereby a better conduction path in the contact region of the electrode and the nanotube. The involvement of the highly directional d orbitals in the interactions involving the palladium cluster leads to an enhanced pi electron density in the nanotube. This enhanced pi electron density is synonymous with an improved electron transmission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号