首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
通过将葡萄糖氧化酶固载于壳聚糖-纳米金复合膜内所构置的传感器,实现了葡萄糖氧化酶的直接电化学,并采用循环伏安法与电化学阻抗法对修饰电极进行了表征。研究表明:在除氧缓冲溶液中,葡萄糖氧化酶-壳聚糖-纳米金复合膜修饰电极表现出一对良好的氧化还原峰,这对峰归因于葡萄糖氧化酶的氧化还原,证明葡萄糖氧化酶被成功固载于复合膜内。电子传递速率常数为15.6 s-1,说明葡萄糖氧化酶的电活性中心与电极之间的电子传递很快。将壳聚糖与纳米金相结合还提高了葡萄糖氧化酶在复合膜内的稳定性并保持其生物活性,并可以用于葡萄糖检测。计算得到其表观米氏常数为10.1 mmol·L-1。而且,该生物传感器可以用于血样中葡萄糖含量的测定。  相似文献   

2.
The direct electron transfer of glucose oxidase (GOD) immobilized on a composite matrix based on porous carbon nanofibers (PCNFs), room-temperature ionic liquid (RTIL), and chitosan (CHIT) underlying on a glassy carbon electrode was achieved. The combination of the PCNFs, RTIL, and CHIT provided a suitable microenvironment for GOD to transfer electron directly. In deaerated buffer solutions (pH 7.0), the cyclic voltammetry of the GOD/PCNFs/RTIL/CHIT composite films showed a pair of well-defined redox peaks with the formal potential of −0.45 V (vs. SCE). The synergistic effort of the PCNFs, RTIL, and CHIT also promoted the stability of GOD in the composite film and retained its bioactivity.  相似文献   

3.
A hybrid system of mesoporous silica (MS) particle incorporated with poly(amidoamine) dendrimer-encapsulated platinum nanoparticles (Pt-DENs) was constructed in a neutral aqueous solution through electrostatic interaction. The MS/Pt-DENs composite particles immobilized with glucose oxidase (GOx) were used to modify a glassy carbon electrode for detecting the electrocatalytic response to the reduction of glucose. Pt-DENs can improve the conductivity of MS and enhance the electron transfer between redox centers in enzymes and electrode surfaces. The structure of composite particles and the performance of MS/Pt-DEN-modified electrodes were characterized by transmission electron microscopy, N2 sorption characterization method, electrochemical impedance spectroscopy, cyclic voltammetry and amperometric measurements. The MS/Pt-DENs/GOx-modified electrodes, which had a fast response of GOx less than 3?s, could be used for the determination of glucose ranging from 0.02 to 10?mM. The detection limits were 4???M at signal-to-noise ratio of 3.  相似文献   

4.
A glucose biosensor based on a nanocomposite made by layer-by-layer electrodeposition of the redox polymer into a multilayer containing glucose oxidase (GOx) and single-walled carbon nanotubes (SWCNT) on a screen-printed carbon electrode (SPCE) surface was developed. The objectives of the electrodeposition of redox polymer are to stabilize further the multilayer using a coordinative cross-linked redox polymer and to wire the GOx. The electrochemistry of the layer-by-layer assembly of the GOx/SWCNT/redox polymer nanocomposite was followed by cyclic voltammetry. The resultant biosensor provided stable and reproducible electrocatalytic responses to glucose, and the electrocatalytic current for glucose oxidation was enhanced with an increase in the number of layers. The biosensor displayed a linear range from 0.5 to 6.0mM, a sensitivity of 16.4μA/(mMcm(2)), and a response time of about 5s. It shows no response to 0.05mM of ascorbic acid, 0.32mM of uric acid and 0.20mM of acetaminophen using a Nafion membrane covering the nanocomposite-modified electrode surface.  相似文献   

5.
Multi‐walled carbon nanotubes (MWNTs) were dispersed in the ionic liquid [BMIM][BF4] to form a uniform black suspension. Based on it, a novel glucose oxidase (GOx)‐hyaluronic (HA)‐[BMIM][BF4]‐MWNTs/GCE modified electrode was fabricated. UV‐vis spectroscopy confirmed that GOx immobilized in the composite film retained its native structure. The experimental results of EIS indicated MWNTs, [BMIM][BF4] and HA were successfully immobilized on the surface of GCE and [BMIM][BF4]‐MWNTs could obviously improve the diffusion of ferricyanide toward the electrode surface. The experimental results of CV showed that a pair of well‐defined and quasi‐reversible peaks of GOx at the modified electrode was exhibited, and the redox reaction of GOx at the modified electrode was surface‐confined and quasi‐reversible electrochemical process. The average surface coverage of GOx and the apparent Michaelis‐Menten constant were 8.5×10−9 mol/cm2 and 9.8 mmol/L, respectively. The cathodic peak current of GOx and the glucose concentration showed linear relationship in the range from 0.1 to 2.0 mmol/L with a detection limit of 0.03 mmol/L (S/N=3). As a result, the method presented here could be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

6.
Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.  相似文献   

7.
A simple glucose biosensor has been developed based on direct electrochemistry of glucose oxidase (GOx) immobilized on the reduced graphene oxide (RGO) and β‐cyclodextrin (CD) composite. A well‐defined redox couple of GOx appears with a formal potential of ~?0.459 V at RGO/CD composite. A heterogeneous electron transfer rate constant (Ks) has been calculated for GOx at RGO/CD as 3.8 s?1. The fabricated biosensor displays a wide response to glucose in the linear concentrations range from 50 µM to 3.0 mM. The sensitivity and limit of detection of the biosensor is estimated as 59.74 µA mM?1 cm?2 and 12 µM, respectively.  相似文献   

8.
The direct electrochemistry of redox enzymes (or proteins) has received more and more attention[1—9]. These studies developed an electrochemical basis for the investigation of enzyme structure, mechanisms of redox transformations of enzyme molecules and metabolic processes involving redox transformations. From these studies, one can also find potential appli-cations of enzymes in biotechnology. For example, if an enzyme immobilized on electrode surface is ca-pable of the direct electron tra…  相似文献   

9.
Nail‐like carbon (NLC) was synthesized by a simple hydrothermal method. It was the first time that a novel electrochemical biosensing of glucose was explored based on the glucose oxidase (GOx)‐NLC‐chitosan (CHIT) glassy carbon electrode. Morphology and structure of NLC were characterized by scanning electron microscope; meanwhile the chemical composition was determined by X‐ray diffraction and energy dispersive X‐ray spectroscopy. The cyclic voltammetry of immobilized GOx showed a pair of quasireversible redox peaks with the formal potential (E°′) of ?0.458 V and the peak‐to‐peak potential separation was 47 mV at a scan rate of 100 mV s?1. The present biosensor has a linear range of glucose from 0.02 to 1.84 mM (correlation coefficient of 0.9991) and detection limit of 0.01 mM (S/N=3). Compared with the previous reports based on the carbon material biosensor, it has a high sensitivity of 165.5 μA mM?1 cm?2 and low apparent Michaelis–Menten constant of 0.506 mM. Thus, the NLC may have potential applications in the field of bioelectrochemistry, bioelectronics and biofuels.  相似文献   

10.
We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of ?0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s?1. The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM?1 cm?2. The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability. Figure
Graphical representation for the fabrication of GNs/ZnO composite modified SPCE and the immobilization of GOx  相似文献   

11.
The one-step synthesis is reported of a nanofilm composed of iron oxide and gold nanoparticles in a chitosan matrix that can act as a novel matrix for the immobilization of glucose oxidase (GOx) to fabricate a glucose biosensor. The use for the composite film strongly increased the effective electrode surface for loading of GOx. The size and shape of the iron oxide nanoparticles were examined by transmission electron micrograph. Direct electron transfer and electrocatalysis by GOx was investigated via cyclic voltammetry and chronoamperometry. Under optimized conditions, the biosensor has a response time of 6?s and a linear response in the range between 3???M and 0.57?mM of glucose, with a detection limit of 1.2???M at a signal-to-noise ratio of 3. This novel and disposable mediatorless glucose biosensor may form the basis for a future mass-produced glucose biosensor.
Figure
In this paper, based on the direct electrochemistry of redox enzyme, we try to integrate the excellent properties of iron oxide-gold nanoparticle-chitosan composite film with the advantages of one-step electrodeposition to fabricate a sensitive and stable glucose biosensor.  相似文献   

12.
采用水热法制备水溶性WS2量子点(WS2 QDs)材料,并将该材料进一步用于葡萄糖氧化酶(GOx)的有效固定,构建GOx/W2 QDs/GCE传感界面. 采用透射电镜、紫外-可见光谱和电化学等方法对材料的形貌、GOx的固定化过程,以及传感器的直接电化学和电催化性能进行了表征. 结果表明,WS2 QDs材料能够有效促进GOx与电极之间的直接电子转移. 并且,基于该传感器对葡萄糖良好的电催化作用,该方法有效实现了对葡萄糖的高灵敏检测,其线性范围为25 ~ 100 μmol·L-1和100 ~ 600 μmol·L-1,检测限为5.0 μmol·L-1(S/N=3). 该传感器具有良好的选择性、重现性和稳定性,可用于实际样品血糖的分析测定.  相似文献   

13.
We report on a novel amperometric glassy carbon biosensing electrode for glucose. It is based on the immobilization of a highly sensitive glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The new technique for immobilization is exploiting the affinity of Co(II) ions to the histidine and cysteine moieties on the surface of GOx. The direct electrochemistry of immobilized GOx revealed that the functionalized CNTs greatly improve the direct electron transfer between GOx and the surface of the electrode to give a pair of well-defined and almost reversible redox peaks and undergoes fast heterogeneous electron transfer with a rate constant (k s) of 0.59?s?1. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor is capable of detecting glucose at levels as low as 0.01?mM, and has excellent operational stability (with no decrease in the activity of enzyme over a 10?days period). The method of immobilizing GOx is easy and also provides a model technique for potential use with other redox enzymes and proteins.
Figure
This paper reports a novel amperometric biosensor for glucose based on the immobilization of the glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor exhibited high sensitivity, good stability and selectivity.  相似文献   

14.
A novel glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on Ag nanoparticles-decorated multiwalled carbon nanotube (AgNP-MWNT) modified glass carbon electrode (GCE). The AgNP-MWNT composite membrane showed an improving biocompatibility for GOx immobilization and an enhancing electrocatalytic activity toward reduction of oxygen due to decoration of AgNPs on MWNT surfaces. The AgNPs also accelerated the direct electron transfer between redox-active site of GOx and GCE surface because of their excellent conductivity and large capacity for protein loading, leading to direct electrochemistry of GOx. The glucose biosensor of this work showed a lower limit of detection of 0.01 mM (S/N?=?3) and a wide linear range from 0.025 to 1.0 mM, indicating an excellent analytical performance of the obtained biosensor to glucose detection. The resulting biosensor exhibits good stability and excellent reproducibility. Such bionanocomposite provides us good candidate material for fabrication of biosensors based on direct electrochemistry of immobilized enzymes.  相似文献   

15.
We investigated the direct electrochemistry of glucose oxidase (GOx) at gelatin-multiwalled carbon nanotube (GCNT) modified glassy carbon electrode (GCE). GOx was covalently immobilized onto GCNT modified GCE through the well known glutaraldehyde (GAD) chemistry. The immobilized GOx showed a pair of well-defined reversible redox peaks with a formal potential (E0′) of ? 0.40 V and a peak to peak separation (ΔEp) of 47 mV. The surface coverage concentration (Г) of GOx in GCNT/GOx/GAD composite film modified GCE was 3.88 × 10? 9 mol cm? 2 which indicates the high enzyme loading. The electron transfer rate constant (ks) of GOx immobilized onto GCNT was 1.08 s? 1 which validates a rapid electron transfer processes. The composite film shows linear response towards 6.30 to 20.09 mM glucose. We observed a good sensitivity of 2.47 μA mM?1 cm? 2 for glucose at the composite film. The fabricated biosensor displayed two weeks stability. Moreover, it shows no response to 0.5 mM of ascorbic acid (AA), uric acid (UA), acetaminophen (AP), pyruvate (PA) and lactate (LA) which shows its potential application in the determination of glucose from human serum samples. The composite film exhibits excellent recovery for glucose in human serum at physiological pH with good practical applicability.  相似文献   

16.
Previously, we have prepared nanoflake-like tin disulfide (SnS2) and used for the immobilization of proteins and biosensing. We have now modified an electrode with a composite consisting of nanoflake-like SnS2 decorated with gold nanoparticles (Au-NPs) and have immobilized glucose oxidase (GOx) on its surface in order to study its direct electrochemistry. Scanning electron microscopy, electrochemical impedance spectroscopy, Fourier transform IR spectroscopy and cyclic voltammetry were used to examine the interaction between GOx and the AuNP-SnS2 film. It is shown that the composite film has a larger surface area and offers a microenvironment that facilitates the direct electron transfer between enzyme and electrode surface. The immobilized enzyme retains its bioactivity and undergoes a surface-controlled, reversible 2-proton and 2-electron transfer reaction, with an apparent electron transfer rate constant of 3.87 s -1. Compared to the nanoflake-like SnS2-based glucose sensor, the GOx-based biosensor exhibits a lower detection limit (1.0 :M), a better sensitivity (21.8 mA?M -1 ?cm -2), and a wider linear range (from 0.02 to 1.3 mM). The sensor displays excellent selectivity, good reproducibility, and acceptable stability. It was successfully applied to reagentless sensing of glucose at ?0.43 V.
Figure
The AuNPs decorated nanoflake-like SnS2 (AuNPs–SnS2) composite is for the first time prepared and used to construct novel glucose biosensor nanoflake-like SnS2 was firstly synthesized and SEM image of the nanoflake-like SnS2 (a) and TEM images of the nanoflake-like SnS2 (b), AuNPs (c) and AuNPs–SnS2 (d) are shown in above figure.  相似文献   

17.
A simple procedure was developed to prepare a glassy carbon electrode modified with multi walled carbon nanotubes (MWCNTs) and Celestin blue. Cyclic voltammograms of the modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range (2–12). The formal potential of redox couple (E′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of Celestine blue immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2. The charge transfer coefficient (α) and heterogeneous electron transfer rate constants (ks) for GC/MWCNTs/Celestine blue were 0.43 and 1.26 s?1, respectively. The modified electrode show strong catalytic effect for reduction of hydrogen peroxide and oxygen at reduced overpotential. The glucose biosensor was fabricated by covering a thin film of sol‐gel composite containing glucose oxides (GOx) on the surface of Celestine blue /MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 0.3 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. The accuracy of the biosensor for glucose detection was evaluated by detection of glucose in a serum sample, using standard addition protocol. In addition biosensor can reach 90% of steady currents in about 3.0 sec and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) was eliminated. Furthermore, the apparent Michaelis–Menten constant 2.4 mM, of GOx on the nano composite exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of glucose biosensor.  相似文献   

18.
Direct electrochemistry of glucose oxidase (GOx) has been achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1-butyl pyridinium hexafluophosphate ([BuPy][PF6]) as binder for the first time. A pair of reversible peaks is exhibited on GOx/CILE by cyclic voltammetry. The peak-to-peak potential separation (ΔEP) of immobilized GOx is 0.056 V in 0.067 M phosphate buffer solution (pH 6.98) with scan rate of 0.1 V/s. The average surface coverage and the apparent Michaelis–Menten constant are 6.69 × 10−11 mol·cm−2 and 2.47 μM. GOx/CILE shows excellent electrocatalytic activity towards glucose determination in the range of 0.1–800 μM with detection limit of 0.03 μM (S/N = 3). The biosensor has been successfully applied to the determination of glucose in human plasma with the average recoveries between 95.0% and 102.5% for three times determination. The direct electrochemistry of GOx on CILE is achieved without the help of any supporting film or any electron mediator. GOx/CILE is inexpensive, stable, repeatable and easy to be fabricated.  相似文献   

19.
Amino acid ionic liquids (AAILs) have attracted much attention due to their special chemical and physical properties, especially their outstanding biocompatibility and truly green aspect. In this work, a novel electrochemical biosensing platform based on AAILs/carbon nanotubes (CNTs) composite was fabricated. AAILs were used as a novel solvent for glucose oxidase (GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes (CNTs) modified glassy carbon (GC) electrode into AAILs containing GOD. The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry. The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen. Due to the synergic effect of AAILs and CNTs, the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM (S/N = 3). Furthermore, the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid. Therefore, AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third- generation enzyme sensors.  相似文献   

20.
A novel electrochemical DNA-based biosensor for the detection of deep DNA damage was designed employing the bionanocomposite layer of multiwalled carbon nanotubes (MWNT) in chitosan (CHIT) deposited on a screen printed carbon electrode (SPCE). The biocomponent represented by double-stranded (ds) herring sperm DNA was immobilized on this composite using layer-by-layer coverage to form a robust film. Individual and complex electrode modifiers are characterized by a differential pulse voltammetry (DPV) with the DNA redox marker [Co(phen)(3)](3+), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with [Fe(CN)(6)](3-) as a redox probe in a phosphate buffer solution (PBS). A good correlation between the CV and EIS parameters has been found, thus confirming a strong effect of MWNT on the enhancement of the electroconductivity of the electrode surface and that of CHIT on the MWNT distribution at the electrode surface. Differences between the CV and EIS signals of the electrodes without and with DNA are used to detect deep damage to DNA, advantageously using simple working procedures in the same experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号