首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have designed a second-generation TASC (target-assisted self-cleavage) probe. It is based on the switching-on of incorporated cis-acting DNAzyme activity upon the target-induced conformational change of the otherwise inactive off-target probes locked in an intrastrand base-paired hairpin geometry. With E. coli 16S ribosomal RNA-relevant oligonucleotides as targets, the locked TASC probe exhibits an allosteric factor of k(on)/k(off) = 65 and the sequence selectivity is high, in terms of single nucleotide difference, when particular sequence and length of targets are chosen. Preliminary experiments with fixed E. coli cells show that the locked TASC probe with a FRET pair can be used to image fixed E. coli cells.  相似文献   

2.
3.
A new fluorescent nucleoside, benzopyridopyrimidine (BPP), which can sharply distinguish between A and G bases opposite BPP has been devised. The base-pairing degeneracy of BPP strongly contributes to the sharp fluorescence change that is dependent on the type of purine bases opposite BPP. The hybridization of an ODN probe containing BPP with a target DNA facilitates the judgment with the naked eye of the type of purine base located at a specific site on the target DNA. The BPP-containing ODN is a very effective probe for A/G SNP typing.  相似文献   

4.
Secondary structure motifs in nucleic acid probes generally impair intended hybridization reactions and so efforts to predict and avoid such structures are commonly employed in probe design schemes. Another key facet of probe design that has received much less attention, however, is that secondary structure at targeted probe binding site regions may also impair hybridization. Thus, evaluation of both probe and target site secondary structures together should improve hybridization prediction and design effectiveness. Several challenges confound this goal, including imperfect empirical rules and parameters underlying predictions and the fact that folding algorithms scale poorly with respect to sequence length. Here, we attempt to quantify the consequences of target site structure on predicted hybridization using sequences sampled from the human genome. We also provide a methodology for choosing a reasonable “window size” around target sites that is as small as possible without compromising folding algorithm prediction accuracy.  相似文献   

5.
A new base-discriminating fluorescent nucleoside, NPP, that can sharply distinguish between A and G bases opposite NPP is described. The hybridization of an ODN probe containing NPP with a target DNA facilitates the judgment of the type of purine base located at a specific site on the target DNA.  相似文献   

6.
A convenient, sensitive, and label-free method to determine the DNA methylation status of CpG sites of plasmid and human colon cancer cell has been developed. The system relies on highly selective single base extension reaction and significant optical amplification of cationic conjugated polyelectrolytes (CCP-1). The higher fluorescence resonance energy transfer efficiency between CCP-1 and fluorescein-labeled dGTP (dGTP-Fl) is correlated to the incorporation of dGTP-Fl into the probe DNA by single base extension reaction when the target/probe pair is complementary at the methylation site. As low as 1% methylation status can be determined by this new assay method. Because of the optical amplification property of CCP-1, the method exhibited high sensitivity with a concentration of analyte DNA at the picomolar level. The CCP-1 can form a complex with negatively charged DNA through electrostatic interactions, avoiding labeling the DNA target and probe by covalent linking. The isolation steps employed in other typical assays were avoided to simplify operations and increase repeatability. These features make the system promising for future use for early cancer diagnosis.  相似文献   

7.
A surface plasmon resonance (SPR) biosensor that carries DNA-binding small ligands has been developed for the detection of single-nucleotide polymorphisms (SNPs). 3,5-Diaminopyrazine derivatives, with a hydrogen-bonding profile fully complementary to the thymine base, were utilized as recognition elements on the sensor surface, and a target single-stranded DNA sequence was hybridized with a DNA probe containing an abasic site to place this site opposite a nucleobase to be detected. In a continuous flow of sample solutions buffered to pH 6.4 (0.25 M NaCl), the 3,5-diaminopyrazine-based SPR sensor can detect an orphan nucleobase in the duplex with a clear selectivity for thymine over cytosine, guanine, and adenine (5'-GTT GGA GCT GXG GGC GTA GGC-3'/3'-CAA CCT CGA CNC CCG CAT CCG-5'; X=abasic site, N=target nucleobase G, C, A, or T). The SPR response was linear in the concentration range 10-100 nM. Allele discrimination is possible based on the combination of different binding surfaces in a flow cell of the SPR system, which is demonstrated for the analysis of the thymine/cytosine mutation present in 63-meric polymerase chain reaction (PCR) amplification products (Ha-ras gene, codon 12, antisense strand). Comparison with a bulk assay based on 3,5-diaminopyrazine/DNA binding shows that the immobilization of 3,5-diaminopyrazine derivatives on the SPR sensor allows more sensitive detection of the target DNA sequence, and binding selectivity can be tuned by controlling the salt concentration of sample solutions. These features of the DNA-binding small-molecule-immobilized SPR sensor are discussed as a basis for the design of SPR biosensors for SNP genotyping.  相似文献   

8.
A combination of an allele specific C-bulge probe and the fluorescent molecule N,N'-bis(3-aminopropyl)-2,7-diamino-1,8-naphthyridine (DANP) that binds specifically to the C-bulge provides a method for single nucleotide polymorphism (SNP) typing with only one fluorescent molecule without covalent modification of the DNA probe. The allele specific C-bulge probe contains one additional cytosine and produces a C-bulge directly flanking the SNP site upon hybridization to the target DNA. The C-bulge is a scaffold to recruit and retain DANP directly neighboring the SNP site. The DANP fluorescent probe was selectively modulated by the flanking matched and mismatched base pairs. The mutation type could be discriminated by the modulated fluorescent intensity with respect to the allele specific C-bulge probes used for the assay.  相似文献   

9.
Fei Y  Jin XY  Wu ZS  Zhang SB  Shen G  Yu RQ 《Analytica chimica acta》2011,691(1-2):95-102
In order to develop a highly sensitive and selective piezoelectric transducer for the detection of DNA, the bio-recognizing probe is for the first time designed by introducing a hairpin structure and a recognition site for EcoRI into an oligonucleotide sequence and signal amplifiers are prepared by modifying gold nanoparticles (GNPs) with biomolecules, deepening the application and understanding of biomaterials. The piezoelectric transducer is prepared by immobilizing designed hairpin recognition probe onto the quartz-crystal-microbalance (QCM). In the absence of target DNA, the hairpin probe is removed from the QCM surface after exposure to endonuclease, inhibiting the subsequent signaling reaction. In contrast, introduction of target DNA can open the hairpin probe due to the probe/target hybridization, dissociating the cleavable double-stranded portion. In this case, even if being treated with endonuclease, the integrated hairpin probe is maintained. Subsequent introduction of GNPs modified with detection probes that can hybridize to the terminal sequence of hairpin probe results in a many-folds increase of the frequency response. Utilizing the proposed transduction scheme, the reliable target DNA detection can be accomplished. The detection limit of 2 pM and dynamic response range for target DNA from 2 to 300 pM are obtained. Furthermore, single-base mismatched DNAs can be easily identified. The developed proof-of-principle of a novel piezoelectric transduction scheme is expected to establish a potential platform for the disease-associated mutation analysis and DNA hybridization detection in biotechnology and medical diagnostics.  相似文献   

10.
In combination with abasic site (AP site)-containing DNAs, potential use of a biotic fluorescence compound, Vitamin B2 (riboflavin), is demonstrated for the fluorescence detection of the thymine (T)-related single-nucleotide polymorphisms. Our method is based on construction of the AP site in DNA duplexes, which allows small ligands to bind to target nucleotides accompanied by fluorescence signaling: an AP site-containing probe DNA is hybridized with a target DNA so as to place the AP site toward a target nucleobase, by which hydrophobic microenvironments are provided for ligands to recognize target nucleotides through stacking and hydrogen-bonding interactions. In 10 mM sodium cacodylate buffer solutions (pH 7.0) containing 100 mM NaCl and 1.0 mM EDTA, Vitamin B2 is found to selectively bind to T (K11 = 1.8 × 106 M−1 at 5 °C) over other nucleobases, and this is accompanied by significant quenching of its fluorescence. While the sensing functions depend on the flanking sequences to the AP site, Vitamin B2 is applicable to the detection of T/C (cytosine), T/G (guanine) and T/A (adenine) mutation sequences of the CYP2A6 gene, where the flanking nucleobases are guanines in both positions (-GXG-, X = AP site).  相似文献   

11.
A novel electrochemical biosensor is described for detection of breakpoint cluster region gene and a cellular abl (BCR/ABL) fusion gene in chronic myelogenous leukemia (CML) by using thiolated-hairpin locked nucleic acids (LNA) as the capture probe. The hairpin LNA probe was immobilized on the nanogold (NG)/poly-eriochrome black T (EBT) film-modified glassy carbon electrode (GCE). The immobilized LNA probe could selectively hybridize with its target DNA on LNA/NG/EBT/GCE surface. The immobilization and hybridization of the LNA probe were characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The hybridization of the immobilized LNA probe with the target DNA was detected by differential pulse voltammetry with the electroactive methylene blue as an indicator. The results indicated this new method has excellent specificity for single-base mismatch and complementary after hybridization, and a high sensitivity. This novel electrochemical biosensor has been used for assay of PCR real sample with satisfactory result.  相似文献   

12.
Deubiquitinating enzymes (DUBs) are known to have numerous important interactions with the ubiquitin cascade and their dysregulation is associated with several diseases, including cancer and neurodegeneration. They are an important class of enzyme, and activity-based probes have been developed as an effective strategy to study them. Existing activity-based probes that target the active site of these enzymes work via nucleophilic mechanisms. We present the development of latent ubiquitin-based probes that target DUBs via a site selective, photoinitiated radical mechanism. This approach differs from existing photocrosslinking probes as it requires a free active site cysteine. In contrast to existing cysteine reactive probes, control over the timing of the enzyme–probe reaction is possible as the alkene warhead is completely inert under ambient conditions, even upon probe binding. The probe''s reactivity has been demonstrated against recombinant DUBs and to capture endogenous DUB activity in cell lysate. This allows more finely resolved investigations of DUBs.

Latent activity-based probes have been developed for deubiquitinating enzymes using a thiol–ene strategy, labelling following a specific binding interaction.  相似文献   

13.
To electrochemically measure human myeloid leukemia cells (K562 cells), we constructed a probe consisting of peptide/single-strand (ss) DNA. Ac-H6Y4C with an acetylated N-terminal of peptide was used to enhance the probe to allow electrode responses that could detect target cells. A ss-DNA was selected as the target cell recognition moiety. The probe exhibits properties that combine the functionalities of both DNA and peptides. The measurement principle is based on changes in the peak currents of the peptide moieties that are caused by interactions between the ss-DNA and target cells. The peak currents were proportional to the concentration of K 562 cells that ranged from 10 to 2,000 cells/mL with a LOD of 3 cells/mL.  相似文献   

14.
A novel approach to construct an electrochemical DNA sensor based on immobilization of a 25 base single-stranded probe, specific to E. coli lac Z gene, onto a gold disk electrode is described. The capture probe is covalently attached using a self-assembled monolayer of 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP) and mercaptohexanol (MCH) as spacer. Hybridization of the immobilized probe with the target DNA at the electrode surface was monitored by square wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. Variables involved in the sensor performance, such as the DTSP concentration in the modification solution, the self-assembled monolayers (SAM) formation time, the DNA probe drying time atop the electrode surface and the amount of probe immobilized, were optimized.

A good stability of the single- and double-stranded oligonucleotides immobilized on the DTSP-modified electrode was demonstrated, and a target DNA detection limit of 45 nM was achieved without signal amplification. Hybridization specificity was checked with non-complementary and mismatch oligonucleotides. A single-base mismatch oligonucleotide gave a hybridization response only 7 ± 3%, higher than the signal obtained for the capture probe before hybridization. The possibility of reusing the electrochemical genosensor was also tested.  相似文献   


15.
This paper describes a method for the detection of single-base mismatches using DNA microarrays in a format that does not require labeling of the sample ("target") DNA. The method is based on disrupting fluorescence energy transfer (FRET) between a fluorophore attached to an immobilized DNA strand ("probe") and a quencher-containing sequence that is complementary except for an artificial mismatch (e.g. 5-nitroindole, 3-nitropyrole, or abasic site) at the site of interrogation. As the displacement of the FRET acceptor and hybridization of the unlabeled probe are bimolecular, the term "bimolecular beacons" is used to describe this approach. The analysis of a mismatch was based on differences in the amount of disruption in FRET upon hybridization of perfectly matched DNA targets and those containing single-base mismatches. Using this method and an oligonucleotide model system, A/C single-base mismatches were successfully discriminated at levels greater than that observed using surface-immobilized molecular beacons. The amount of discrimination was dependent on the identity of the artificial mismatch; greater discrimination was observed with 5-nitroindole (a "universal" base) than with an abasic site. G/T mismatches, considered to be particularly difficult to detect, were also successfully discriminated when quencher sequences containing 5-nitroindole were used.  相似文献   

16.
Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields.  相似文献   

17.
Xu S  Shao Y  Ma K  Cui Q  Liu G  Wu F  Li M 《The Analyst》2011,136(21):4480-4485
DNA single-nucleotide polymorphism (SNP) detection has attracted much attention due to mutation-related diseases. Various fluorescence methods for SNP detection have been proposed and many are already in use. However, fluorescence enhancement for signal-on SNP identification without label modification still remains a challenge. Here, we find that the abasic site (AP site) in a DNA duplex can be developed as a binding pocket favorable for the occurrence of the excited-state intramolecular proton transfer (ESIPT) of a 3-hydroxyflavone, fisetin, which is used as a proof of concept for effective SNP identification. Fisetin binding at the AP site is highly selective for target thymine or cytosine facing the AP site by observation of a drastic increase in the ESIPT emission band. In addition, the target recognition selectivity based on this ESIPT process is not affected by flanking bases of the AP site. The binding selectivity of fisetin at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, emission lifetime and DNA melting. The fluorescent signal-on sensing for SNP based on this fluorophore is substantially advantageous over the previously used fluorophores such as the AP site-specific signal-off organic ligands with a similar fluorescing mechanism before and after binding to DNA with hydrogen bonding interaction. We expect that this approach will be employed to develop a practical SNP detection method by locating an AP site toward a target and employing an ESIPT probe as readout.  相似文献   

18.
A novel method for the future development of label-free DNA sensors is proposed here. The approach is based on the displacement of a labelled suboptimum mutated oligonucleotide hybridised with the immobilised biotin-capture probe. The target fully complementary to the biotin-capture probe can displace the labelled oligonucleotide causing a subsequent decrease of the signal that verifies the presence of the target. The decrease of signal was demonstrated to be proportional to the target concentration. A study of the hybridisation of mutated and complementary labelled oligonucleotides with an immobilised biotin-capture probe was carried out. Different kinetic and thermodynamic behaviour was observed for heterogeneous hybridisation of biotin-capture probe with complementary or suboptimum oligonucleotides. The displacement method evaluated colourimetrically achieved the objective of decreasing the response time from 1 h for direct hybridisation of 19-mer oligonucleotides in the direct enzyme-linked oligonucleotide assay (ELONA) to 5 min in the case of displacement detection in the micromolar concentration range. Figure The detection system is based on the displacement of suboptimum HRP-labelled mutated oligonucleotide by the fully complementary target  相似文献   

19.
Li Z  Li W  Cheng Y  Hao L 《The Analyst》2008,133(9):1164-1168
A new chemiluminescent (CL) method has been developed for the sensitive detection of DNA hybridization and single-nucleotide polymorphisms (SNPs) with target-primed rolling circle amplification (RCA). The capture oligonucleotide probe is firstly immobilized on a polystyrene well plate and then hybridized with the wild DNA target. A designed padlock probe is circularized after perfect hybridization to the DNA target. Then the RCA reaction can be initiated from the DNA target that acts as a primer and generates a long tandem single-strand of DNA with repeat sequences. In contrast, the mutant DNA target, which contains a mismatched base with the padlock probe, cannot initiate the RCA reaction and primes only a limited extension with the unligated padlock probe. Afterwards, a biotinylated oligonucleotide is used to hybridize with the RCA product in each repeat sequence and streptavidin-alkaline phosphatase (STV-AP) is employed to combine the anchored biotin. The DNA target is detected with the CL reaction of STV-AP and 3-(2'-spiroadamantane)-4-methoxy-4-(3'-phosphoryloxy)phenyl-1,2-dioxetane (AMPPD). With the RCA-based method, the sensitivity of DNA detection can be increased by about two orders of magnitude compared with that of direct DNA hybridization. A DNA target as low as 3.6 pM can be detected. Wild-type DNA and the one-base mutant DNA can be differentiated with high selectivity through this RCA reaction.  相似文献   

20.
Advances in RNA research and RNA nanotechnology depend on the ability to manipulate and probe RNA with high precision through chemical approaches, both in vitro and in mammalian cells. However, covalent RNA labeling methods with scope and versatility comparable to those of current protein labeling strategies are underdeveloped. A method is reported for the site‐ and sequence‐specific covalent labeling of RNAs in mammalian cells by using tRNAIle2‐agmatidine synthetase (Tias) and click chemistry. The crystal structure of Tias in complex with an azide‐bearing agmatine analogue was solved to unravel the structural basis for Tias/substrate recognition. The unique RNA sequence specificity and plastic Tias/substrate recognition enable the site‐specific transfer of azide/alkyne groups to an RNA molecule of interest in vitro and in mammalian cells. Subsequent click chemistry reactions facilitate the versatile labeling, functionalization, and visualization of target RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号