首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold nanocolloids with the controlled diameter ranging from 5.2 to 10.7 nm were in situ prepared by reduction of gold chloride trihydrate with sodium borohydride as reductant via the interaction between the gold naocolloids and the functional groups on the surface of polymer microsphere-stabilizer. The nature of such interaction was studied in detail by X-ray photoelectron spectroscopy (XPS). The effect of the functional groups on the catalytic activity of the gold nanocolloids was preliminarily investigated with the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride as reductant.  相似文献   

2.
Unforced nanoelectrospray can exhibit a number of stable spray modes. These include low frequency pulsations, high frequency pulsations, and a steady cone-jet. Experiments are reported here on such pulsations that have been observed in various salt loaded solutions of ethylene glycol, triethylene glycol and water. The spray current was monitored with 1 mus time resolution to show that spray regime characteristics depend on nozzle diameter and liquid conductivity. The frequency of pulsations was found to increase with both increased liquid conductivity and decreasing nozzle diameter. The charge ejected during a pulse is lower for smaller nozzles spraying higher conductivity liquids. Water solutions were observed undergoing high frequency pulsations, with these pulsations often occurring in lower frequency bursts. The frequencies of water pulsations were as high as 635 kHz but the charge ejected by each pulsation was an order of magnitude lower than that observed in triethylene glycol. An unforced electrospray of water was also identified as being in the steady cone-jet mode with a higher degree of confidence than previously. The values for stable pulsation frequency and charge ejected observed in ethylene glycol lay between those of TEG and water.  相似文献   

3.
The limit of detection of gold by electrothermal atomisation and double-resonance laser-induced atomic fluorescence can reach the low femtogram level as absolute amount of gold deposited in the furnace. At these high sensitivities, even dry firings of the graphite tube may result in a signal, which is unequivocally attributed to atomic fluorescence of the gold content of the tube released during atomisation. The occurrence and the analytical relevance of such blank signals are presented and discussed in this note.  相似文献   

4.
The increasing tendency to miniaturize analytical techniques has resulted in the widespread use of nanoelectrospray ionization mass spectrometry. A new polyaniline-coated nanoelectrospray emitter has shown increasing promise as a more durable and stable alternative to traditional metal-coated emitters. In this report, the utility of polyaniline-coated nanoelectrospray emitters in the negative ion mode is investigated. Here, oligonucleotides and peptides have been ionized in the negative mode using polyaniline-coated nanoelectrospray emitters. The emitters were found to be durable for at least an hour in the negative ion mode, during which time the signal was stable. The high amount of electrical discharge usually associated with negative ion mode nanoelectrospray was not problematic with the polyaniline-coated emitters. These characteristics make possible the reliable coupling of low-flow separations to negative ion nanoelectrospray without the worry of emitter failure during the course of the experiment.  相似文献   

5.
Caco-2 cells offer a means to rapidly screen permeability of drug candidates, allowing pharmaceutical companies to eliminate candidates unable to cross the intestinal barrier early in the discovery process. This screening process is typically performed by conventional liquid chromatography/tandem mass spectrometry (LC/MS/MS), which can require time-consuming method development. An alternative to LC/MS/MS, automated nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS), is introduced. This novel approach requires an off-line ZipTip desalting step followed by automated nanoESI-MS/MS, using the NanoMate 100 and ESI Chip. In addition to reduced method development time, automated nanoESI-MS/MS also offers no carry-over between samples, low sample consumption, and ease-of-use as compared with conventional pulled-capillary nanoelectrospray. Furthermore, the infusion system described has the potential to be high-throughput. A comparison of Caco-2 samples analyzed both by LC/MS/MS and by automated nanoESI-MS/MS is presented. The permeability and recovery data of the two compounds analyzed in this study obtained from conventional LC/MS/MS and by automated nanoESI-MS/MS were in excellent agreement.  相似文献   

6.
Smith DR  Moy MA  Dolan AR  Wood TD 《The Analyst》2006,131(4):547-555
As miniaturization of electrospray continues to become more prevalent in the mass spectrometry arsenal, numerous types of conductive coatings have been developed with miniaturized electrospray emitters. Different conductive coatings have different properties that may lead to differences in analytical performance. This paper investigates and compares the analytical properties of a series of applied conductive coatings for low-flow electrospray ionization developed in this laboratory vs. commercially-available types. Evaporated graphite is thoroughly compared with commercially available polyaniline (PANI) coated emitters and metal coated emitters. Each set of emitters was investigated to determine various performance characteristics, including susceptibility to electrical discharge in both positive and negative ionization modes, as well as emitter reproducibility and generation of a standard curve to determine each emitter coating's limit of detection and limit of quantitation. Furthermore, evaporated graphite and polyaniline coated fused silica capillaries were investigated to determine which coating is more stable over long-term analyses and during electrical discharge.  相似文献   

7.
Adsorption characteristics of thionine on gold nanoparticles   总被引:2,自引:0,他引:2  
Adsorption characteristics of thionine on gold nanoparticles have been studied by using UV-vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), cyclic voltammetry and Fourier transform infrared spectroscopy. With the increasing concentration of gold nanoparticles, the absorption peak intensity of H-type dimers of thionine increases continuously, whereas that of monomers of thionine first increases and then decreases. The addition of gold nanoparticles makes the equilibrium between the monomer and H-type dimer forms of thionine move toward the dimer forms. Furthermore, the adsorption behavior of thionine on gold nanoparticles is also influenced by temperature. TEM images show that the addition of thionine results in an obvious aggregation, and further support the absorption spectral results. The fluorescence intensity of adsorbed thionine is quenched by gold nanoparticles due to the electronic interaction between thionine molecules and gold nanoparticles. Cyclic voltammetric and infrared spectroscopic studies show that the nitrogen atoms of both of the NH2 moieties of thionine strongly bind to the gold nanoparticle surfaces through the electrostatic interaction of thionine with gold nanoparticles. For 15-20 nm particles, the number of adsorbed thionine molecules per gold nanoparticle is about 7.66 x 10(4). Thionine molecules can not only bind to a particle to form a compact monolayer via both of the NH2 moieties, but they can also bind to two particles via their two NH(2) moieties, respectively.  相似文献   

8.
9.
10.
X-ray photoelectron and Fourier transform infrared spectroscopy studies are reported for self-assembled monolayers (SAMs) of two tripodal thiol-functionalized metalloporphyrins (Zn and Cu) and three benchmark tripods on gold substrates. The tripodal unit common to all five molecules is 1-(phenyl)-1,1,1-tris(4-mercaptomethylphenyl)methane (Tpd). Both porphyrins contain S-acetyl-protected thiols and are linked to the 4-position of the phenyl ring of Tpd via a phenylethyne group. The benchmark molecules include (1) two tripods containing a bromine atom at the 4-position of the apical phenyl ring, one a free thiol and the other its S-acetyl-protected analogue, and (2) a S-acetyl-protected tripod containing a phenylethyne unit at the 4-position of the apical phenyl group. Together, the spectroscopic studies reveal that none of the five tripodal molecules bond to the gold surface via all three sulfur atoms. Instead, the average number of bound thiols ranges from 1.5 to 2, with the porphyrinic molecules generally falling at the middle to upper end of the range and the smallest benchmark tripods falling at the lower end. Similar surface binding is found for the S-acetyl-protected and free benchmark tripods, indicating that the presence of the protecting group does not influence binding. Furthermore, the surface binding characteristics of the SAMs are not sensitive to deposition conditions such as solvent type, deposition time, or temperature of the solution.  相似文献   

11.
12.
The molecular distribution in nanocolloids of poly(dimethyl siloxane) (PDMS) and an organic copolymer (methyl acrylate co-methyl methacrylate co-vinyl acetate) preserved in a frozen aqueous solution was investigated using cryovalence electron energy-loss spectroscopy (EELS) coupled with a scanning transmission electron microscope. Low energy-loss spectra depend upon valence electron structure, and we show that they are substantially different for the PDMS, the copolymer, and the vitrified water studied here. Combining a high efficiency detection system and the use of high-signal low-loss spectra in EELS, we achieved a spatial resolution of 8 nm without serious beam-induced specimen damage in this radiation-sensitive soft-materials system. To obtain quantitative phase maps of silicone and copolymer composition within individual nanoparticles, spectrum datasets were processed via multiple least squares fitting. Quantitative line profiles from the resulting compositional maps indicate that the PDMS lobe of biphasic nanoparticles contained a significant amount of the copolymer and a diffuse interface was formed. Since the nanoparticle synthesis involves polymerization of acrylate monomer dissolved in PDMS nanoparticle precursors, these results suggest that the evolution of the nanocolloid morphology during synthesis is kinetically frozen as the acrylate copolymer achieves some critical molecular weight.  相似文献   

13.
The adsorption of chloroethyl ethyl sulfide and 2,2'-dichloro ethyl sulfide to gold nanoparticles has been examined in the gas phase using surface-plasmon resonance spectroscopy. The equilibrium constants for the gas-phase adsorption reactions are 14 +/- 4 and 25 +/- 5 atm(-1), respectively. The bond energy of the Au-chloroethyl ethyl sulfide complex is 44 +/- 9 kJ mol(-1). The bond energy of Au-2,2'-dichloro ethyl sulfide is estimated to be 47 kJ mol(-1). Halogenation of the dialkyl side chains is found to have little impact on the chemistry, and only physisorption processes occur, analogous to dialkyl sulfide adsorption on Au surfaces.  相似文献   

14.
The formation of a dense monolayer of histidine-tagged recombinant laccase on gold electrodes by using a short thiol-NTA linker is described, as well as a kinetic analysis of the process by cyclic voltammetry. From a detailed analysis of the catalytic reduction of dioxygen by laccase in the presence of a one-electron redox mediator it can be concluded that the immobilized enzyme remains as active as in homogeneous solution.  相似文献   

15.
Chondroitin/dermatan sulfate (CS/DS) chain of decorin (DCN) from human skin fibroblasts (HSk) was released by reductive β-elimination reaction and digested with chondroitin AC I lyase. Enzymatic hydrolysis mixture of CS/DS chains was separated by size-exclusion chromatography (SEC). Collected octasaccharide fraction was subjected to fully automated chip-based nanoelectrospray (nanoESI) quadrupole time-of-flight (QTOF) MS and tandem MS (MS/MS). MS of human skin fibroblasts DCN CS/DS displayed a high complexity due to the large variety of glycoforms, which under chip-nanoESI MS readily ionized to form multiply charged ions. Except for the regularly tetrasulfated octasaccharide, the investigated fraction contained four additional octasaccharides of atypical sulfation status. Two new oversulfated glycoforms and two undersulfated species were identified. Remarkably, the series of decasaccharides discovered in the same SEC pool was found to encompass a trisulfated and a novel hexasulfated [4,5-Δ-GlcAGalNAc(IdoAGalNAc)?] species. MS/MS by collision-induced dissociation (CID) on the [M-4H]? ion corresponding to the previously not reported [4,5-Δ-GlcAGalNAc(IdoAGalNAc)?](5S) corroborated for a novel motif in which three N-acetylgalactosamine (GalNAc) moieties are monosulfated, 4,5-Δ-GlcA and the first IdoA from the non-reducing end bear one sulfate group each, while the second N-acetylgalactosamine from the reducing end is unsulfated.  相似文献   

16.
17.
18.
The energy of pair interactions between metal nanoparticles of different sizes is shown to be able to increase upon coagulation due to the additional electrostatic effect resulting from mutual heteropolar charging of the particles. The tunnel electron transfer occurring upon the collisions between particles of different sizes may be the reason for the charging. The transfer is caused by the dependence of the electron work function on the particle size. The electron transfer through the interparticle gap equalizes the Fermi levels in particles of different sizes and is associated with this dependence. Using the example of bimodal silver nanocolloids, it is shown that mutual heteropolar charging of particles with different sizes may accelerate the coagulation of polydisperse colloidal systems by an order of magnitude or more as compared with monodisperse systems, in which this effect is absent.  相似文献   

19.
Gold nanoparticles with uniform mean sizes (≈3 nm) loaded onto various supports have been prepared and studied for the oxidant-free dehydrogenation of benzyl alcohol to benzaldehyde and hydrogen. The use of hydrotalcite (HT), which possesses both strong acidity and strong basicity, provides the best catalytic performance. Au/HT catalysts with various mean Au particle sizes (2.1-21 nm) have been successfully prepared by a deposition-precipitation method under controlled conditions. Detailed catalytic reaction studies with these catalysts demonstrate that the Au-catalyzed dehydrogenation of benzyl alcohol is a structure-sensitive reaction. The turnover frequency (TOF) increases with decreasing Au mean particle size (from 12 to 2.1 nm). A steep rise in TOF occurs when the mean Au particle size becomes smaller than 4 nm. Our present work suggests that the acid-base properties of the support and the size of Au nanoparticles are two key factors controlling the alcohol dehydrogenation catalysis. A reaction mechanism is proposed to rationalize these results. It is assumed that the activation of the β-C-H bond of alcohol, which requires the coordinatively unsaturated Au atoms, is the rate-determining step.  相似文献   

20.
Li Z  Niu T  Zhang Z  Chen R  Feng G  Bi S 《The Analyst》2011,136(10):2090-2099
In this article we studied the permeable characteristics of thiol-modified double-stranded DNA (ds-DNA) self-assembled monolayers (SAMs) on a gold substrate assembled under different NaCl concentrations by electrochemical methods. It was based on the inspection of five important parameters including interfacial capacitance (C), phase angle (Φ(1?Hz)), ions transfer resistance (R(it)*), current density difference (Δj) and electron transfer rate (k(et)) through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Three sections were included: (1) Investigation of the relationships of C, Φ(1?Hz), R(it)*, Δj and k(et) with NaCl concentrations and comparison with the reports from literature. Experimental results showed that ds-DNA-SAMs were permeable films. (2) Construction of a simple model for exploring the permeable characteristics of ds-DNA-SAMs on gold. (3) Confirmation of the simple model by chronocoulometry (CC) and application of the model to explain the permeable mechanism. This study was significant for exploring the mechanism of electron transfer through the interior of ds-DNA duplex helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号