首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We describe the formation of multi-walled carbon nanotubes (MWCNTs) which have grown during annealing at 800 °C of Fe-C-based nanopowder in vacuum. The Fe-C-based nanopowder was produced by a laser pyrolysis of gas-phase reactants. The as-synthesized and annealed samples were characterised by TEM, XRD, Mössbauer spectroscopy, Raman spectroscopy, and magnetic measurements. Under the TEM, MWCNTs were observed in the annealed sample. In addition, larger particles with the graphitic shells and various graphitic structures were found. XRD and Mössbauer analysis confirmed that only two iron phases were present in the annealed sample: α-Fe and Fe3C. Phase transformations taking place during the thermal treatment of the sample are discussed.  相似文献   

2.
Crystal growth and the magnetic properties of bismuth substituted yttrium iron garnet (Bi-YIG) nanoparticles were studied with particular focus on the bismuth composition dependence of the magnetic properties of the particles and the effects of annealing on the garnet phase formation. The Bi-YIG nanoparticles of 47–67 nm in size can be chemically synthesized when they are annealed at 650–850 °C. Both the lattice constant and the magnetization of the garnet nanoparticles linearly increase when the bismuth composition in the Bi-YIG particles increases. We have found that chemically synthesized nanoparticles transform from the amorphous to the garnet phase when annealed at temperatures below 650 °C, while the onset of magnetic moment of iron in the garnet nanoparticles is observed slightly above 650 °C. According to Mössbauer effect measurements, the hyperfine fields of 57Fe at the tetrahedral and octahedral sites in the garnet are 39 and 48 T, respectively.  相似文献   

3.
Nanocrystalline zinc sulfide (ZnS) (nanorods) was synthesized by chemical precipitation method, and they were annealed in air at different temperatures in the range 200–700 °C for the phase transition of ZnS to ZnO. The characterization of the system was done by different techniques such as X-ray diffraction (XRD), high-resolution transmission electron microscopy, UV–Vis spectroscopy, photoluminescence spectroscopy and differential scanning calorimetry (DSC). From the XRD and TEM analysis, the crystal structure is found to convert from cubic ZnS phase to the hexagonal ZnO phase and its morphology from nanorods to nanoparticles with the increasing annealing temperatures. The UV–Visible absorption and photoluminescence measurements revealed that the relative changes in the phases alter the band gap and introduce new kinds of defects in the system. The percentage of the ZnS and ZnO phase has been found to be proportional to the annealing temperature for a fixed time interval, and the DSC measurement has also found similar results as in the XRD pattern during the phase transitions.  相似文献   

4.
Cerium-doped calcium sulphide nanoparticles were synthesized using the solid state diffusion method. The formed nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed a cubic CaS phase with an average grain size of 53 nm of the formed samples. The TEM image showed non-agglomerated particles with an average size of 60 nm, which is in close agreement with the XRD result. The PL-emission spectrum showed peaks at 506 and 565 nm due to the transition from the excited state to the ground state of Ce3+. The effect of etching has been studied on the luminescent properties of CaS:Ce phosphors. With an increase in the etching time there is decrease in the size of the particles, as a result of which the PL spectrum showed a slight blue shift. The UV-visible absorption spectrum also showed a blue shift with an increase in etching time, which is in agreement with the nanosize effect.  相似文献   

5.
Pt50–Fe50 nanoparticles were synthesized by the chemically wet process for developing a new high efficiency cathode catalyst in PEFCs. The particle morphology and crystal structure of as synthesized Pt–Fe particles, and electronic state of Fe atoms in them were evaluated using transmission electron microscopy(TEM), X-ray diffraction(XRD) and transmission Mössbauer spectroscopy (TMS), respectively. They are confirmed to be of chemically disordered fcc structure from XRD pattern and the average diameter of them was estimated to be 3.1 nm from both TEM and the width of (111) peak in XRD pattern. From TMS spectrum, it was concluded to consist of mainly the component of Fe oxides connected with the organic ligands according to XPS results mentioned below. But, probably it contains the component for superparamagnetic Pt–Fe nanoparticles. Also the electrocatalytic activity and a hydrogen adsorption/desorption behavior for as synthesized Pt–Fe nanoparticles was observed by cyclic voltammetry and the oxidation of Fe atoms in as synthesized Pt–Fe nanoparticles, Fe metal and Fe oxides were measured.  相似文献   

6.
Nearly monodisperse, well crystalline, superparamagnetic CoFe2O4 nanoparticles with diameter of 6 nm were synthesized in oleic acid–water–pentanol system at 180 °C. Hydrothermal procedure, as an efficient and environment friendly alternative to organic decomposition methods, was investigated by variation of reaction conditions, and the particle formation mechanism was finally proposed (i.e., hydrolysis of metal oleates in organic phase, with size of the particles (5–8 nm) controlled by polarity-driven precipitation into water phase). As-prepared particles were hydrophobic due to coating by oleic acid. Further modification with dimercaptosuccinic acid led to water-dispersible particles with hydrodynamic diameter of 20 nm. Prepared particles were investigated by TEM, XRD, ICP-AES, light scattering, SQUID magnetometry, and Mössbauer spectroscopy.  相似文献   

7.
Polymer nanocomposites with ferroelectric fillers are promising materials for modern power electronics that include energy storage devices. Ferroelectric filler, Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) nanopowder, was synthesized by sol-gel method. X-ray diffraction (XRD) studies confirmed the phase purity and the particle size distribution was determined by transmission electron microscopy (TEM). Extended aromatic ligand in the form of naphthyl phosphate (NPh) was chosen for surface passivation of BCZT nanoparticles. Surface functionalization was validated by thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy using slurry technique. The dielectric constant of surface-passivated BCZT nanopowder was ~155, whereas pristine BCZT nanopowder dielectric constant could not be assessed due to high innate surface conductivity. Furthermore, BCZT–epoxy nanocomposite films were prepared and analyzed by differential scanning calorimetry (DSC), dielectric spectroscopy, dielectric breakdown strength (DBS), and scanning electron microscopy (SEM). Owning to stronger polymer–particle interface, dielectric measurements of 5 vol.% NPh surface functionalized BCZT–epoxy nanocomposites indicated improved DBS and glass transition temperature (Tg), reduced dielectric loss, and enhanced energy storage density compared to untreated BCZT–epoxy composites and pure epoxy. The energy storage density of 30 vol.% NPh surface functionalized BCZT–epoxy nanocomposite of 20 μm film thickness was almost three times that of pure epoxy polymer of identical film thickness.  相似文献   

8.
Two stable phases of cobalt oxide nanoparticles of controlled sizes have been synthesized using environmentally friendly inorganic precursor. Structural characterization using X-ray diffraction (XRD) shows a single-phase spinal Co3O4 structure up to annealing temperature of 800 °C and a mixed phase of Co3O4 and CoO particles for T>900 °C. Single-phase CoO nanoparticles are also obtained by annealing the particles at a temperature >900 °C and cooling in inert atmosphere. Average macro- and micro-strain were estimated using XRD data. Macrostrain was found to be the minimum for particles annealed at 600 °C, whereas microstrain was found to decrease with increasing annealing temperature up to 900 °C. A correlation between the density of localized states (DOS) in the band gap and strain is expected because the origin of both strain and DOS are defects and bond length distortions. Sub-gap absorption measurement and model calculations have been used for the determination of DOS. For cobalt oxide nanoparticle samples we find a correlation between estimated strain and density of states in the band gap.  相似文献   

9.
Microwave-assisted synthesis of iron oxide/oxyhydroxide nanophases was conducted using iron(III) chloride titrated with sodium hydroxide at seven different temperatures from 100 to 250 °C with pulsed microwaves. From the X-ray diffraction (XRD) results, it was determined that there were two different phases synthesized during the reactions which were temperature dependent. At the lower temperatures, 100 and 125 °C, it was determined that an iron oxyhydroxide chloride was synthesized. Whereas, at higher temperatures, at 150 °C and above, iron(III) oxide was synthesized. From the XRD, we also determined the FWHM and the average size of the nanoparticles using the Scherrer equation. The average size of the nanoparticles synthesized using the experimental conditions were 17, 21, 12, 22, 26, 33, 28 nm, respectively, for the reactions from 100 to 250 °C. The particles also had low anisotropy indicating spherical nanoparticles, which was later confirmed using transmission electron microscopy (TEM). Finally, X-ray absorption spectroscopy (XAS) studies show that the iron present in the nanophase was present as iron(III) coordinated to six oxygen atoms in the first coordination shell. The higher coordination shells also conform very closely to the ideal or bulk crystal structures.  相似文献   

10.
We have measured the size, structure, and optical properties for two sets of nanoparticles synthesized via electrical-spark discharge between two plane silicon electrodes immersed in deionized water (DI) and 97 % ethanol. The nanoparticles were characterized by X-ray diffraction (XRD), ultraviolet (UV)-visible absorption spectrometry, Raman spectrometry, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The size and optical features of the nanoparticles were studied as functions of nature of the liquid. Nearly spherical, single-crystal, and morphologically similar Si nanoparticles with diameters in the 3–8 and 6–13 nm ranges were formed in the colloidal solutions of water and ethanol, with estimated indirect bandgaps of approximately 1.5 and 1.3 eV, respectively. In both cases, the Raman peaks were blue shifted with respect to those of bulk silicon, a result consistent with the small diameters of the particles. The silicon nanoparticles synthesized in water exhibited strong emission in the violet-blue range, with a double peak near 417 and 439 nm. For those synthesized in ethanol, blue-green emission centered at 463 nm was detected.  相似文献   

11.
Well-dispersed undoped and Mg-doped ZnO nanoparticles with different doping concentrations at various annealing temperatures are synthesized using basic chemical solution method without any capping agent. To understand the effect of Mg doping and heat treatment on the structure and optical response of the prepared nanoparticles, the samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray (EDX), UV–Vis optical absorption, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The UV–Vis absorbance and PL emission show a blue shift with increasing Mg doping concentration with respect to bulk value. UV–Vis spectroscopy is also used to calculate the band-gap energy of nanoparticles. X-ray diffraction results clearly show that the Mg-doped nanoparticles have hexagonal phase similar to ZnO nanoparticles. TEM image as well as XRD study confirm the estimated average size of the samples to be between 6 and 12 nm. Furthermore, it is seen that there was an increase in the grain size of the particles when the annealing temperature is increased.  相似文献   

12.
In order to increase the longevity of contaminant retention, a method is sought to improve the corrosion resistance of iron nanoparticles (INP) used for remediation of contaminated water and thereby extend their industrial lifetime. A multi-disciplinary approach was used to investigate changes induced by vacuum annealing (<5 × 10?8 mbar) at 500 °C on the bulk and surface chemistry of INP. The particle size did not change significantly as a result of annealing but the surface oxide thickness decreased from an average of 3–4 nm to 2 nm. BET analysis recorded a decrease in INP surface area from 19.0 to 4.8 m2 g?1, consistent with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations which indicated the diffusion bonding of previously discrete particles at points of contact. X-ray diffraction (XRD) confirmed that recrystallisation of the metallic cores had occurred, converting a significant fraction of poorly crystalline iron to bcc α-Fe and Fe2B phases. X-ray photoelectron spectroscopy (XPS) indicated a change in the surface oxide stoichiometry from magnetite (Fe3O4) towards wüstite (FeO) and the migration of boron and carbon to the particle surfaces. The improved core crystallinity and the presence of passivating impurity phases at the INP surfaces may act to improve the corrosion resistance and reactive lifespan of the vacuum annealed INP for environmental applications.  相似文献   

13.
In this paper, we report a simple and low-cost technique for fabrication of silicon nanoparticles via electrical spark discharge between two plane silicon electrodes immersed in deionized water (DI). The pulsed spark discharge with the peak current of 60 A and a duration of a single discharge pulse of 60 μs was used in our experiment. The structure, morphology, and average size of the resulting nanoparticles were characterized by means of X-Ray Diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). TEM images illustrated nearly spherical and isolated Si nanoparticles with diameters in the 3–8 nm range. The Raman peaks of the samples were shifted to the lower wave numbers in comparison to this of bulk crystalline silicon indicating the existence of tiny particles. The optical absorption spectrum of the nanoparticles was measured in the violet–visible (UV–Vis) spectral region. By measuring of the band gap we could estimate the average size of the prepared particles. The silicon nanoparticles synthesized exhibited a photoluminescence (PL) band in the violet-blue region with a double peak at around 417 and 439 nm. It can be attributed to oxide-related defects on the surface of silicon nanoparticles, which can act as the radiative centers for the electron-hole pair recombination.  相似文献   

14.
The photoluminescence (PL) and optical properties of CdS nanoparticles prepared by the solid-state method at low temperature have been discussed. The effects of NaCl and anionic surfactant SDBS (sodium dodecylbenzene sulfonate) on the luminescent properties of CdS nanophosphors prepared using this method, without the inert gas or the H2S environment, were studied separately. The synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), and energy dispersive X-ray spectroscopy (EDAX). UV–VIS absorption and PL spectra were also studied. XRD studies confirmed the single-phase formation of CdS nanoparticles. TEM micrograph revealed the formation of nearly spherical nanoparticles with a diameter of 2.5 nm. The PL emission for the CdS shows the main peak at 560 nm with a shoulder at 624 nm, with an increase in the PL intensity after the addition of SDBS. The effect of Mn doping on PL intensity has also been investigated. The PL spectra show that the emission intensity decreases as the dopant concentration increases.  相似文献   

15.
In order to increase the longevity of contaminant retention on the particle surface, a method is sought to improve the corrosion resistance of bimetallic iron nickel nanoparticles (INNP) used for the remediation of contaminated water, and thereby extend their industrial lifetime. A multi-disciplinary approach was used to investigate changes induced by vacuum annealing (<5 × 10?8 mbar) at 500 °C on the bulk and surface chemistry of INNP. The particle size was determined to increase significantly as a result of annealing and the thickness of the surface oxide increased by 50%. BET analysis recorded a decrease in INP surface area from 44.88 to 8.08 m2 g?1, consistent with observations from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which indicated the diffusion bonding of previously discrete particles at points of contact. X-ray diffraction (XRD) confirmed that recrystallisation of the metallic cores had occurred, converting a significant fraction of initially amorphous iron nickel alloy into crystalline FeNi alloy. X-ray photoelectron spectroscopy (XPS) indicated a reduction in the proportion of surface iron oxide and a change in its stoichiometry related to annealing-induced disproportionation. This was also evidenced by an increased proportion of Fe(0) and Ni(0) to Fe- and Ni-oxides, respectively. The data also indicated the concurrent development of boron oxide at the metal surfaces, which accounts for the overall increase measured in surface oxide thickness. The improved core crystallinity and the presence of passivating impurity phases at the INNP surfaces may act to improve the corrosion resistance and reactive lifespan of the vacuum annealed INNP for environmental applications.  相似文献   

16.
Nanosized zinc oxide has been synthesized through a novel single step solution combustion route using citric acid as fuel. The X-ray diffraction (XRD) analysis revealed that the synthesized ZnO nanopowder has the pure wurtzite structure. The phase purity of the nanopowder has been confirmed using differential thermal analysis (DTA), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The morphology and crystalline size of the as-prepared nanopowder characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the powder consisted of a mixture of nanoparticles and nanorods. The nanocrystalline ZnO could be sintered to ∼97% of the theoretical density at 1200 °C in 4 h. The dielectric constant (εr) and dielectric loss (εi) of sintered ZnO pellets at 5 MHz were 1.38 and 9×10−2, respectively, at room temperature.  相似文献   

17.
The chitosan-coated magnetic nanoparticles (CS MNPs) were in situ synthesized by cross-linking method. In this method; during the adsorption of cationic chitosan molecules onto the surface of anionic magnetic nanoparticles (MNPs) with electrostatic interactions, tripolyphosphate (TPP) is added for ionic cross-linking of the chitosan molecules with each other. The characterization of synthesized nanoparticles was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS/ESCA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and vibrating sample magnetometry (VSM) analyses. The XRD and XPS analyses proved that the synthesized iron oxide was magnetite (Fe3O4). The layer of chitosan on the magnetite surface was confirmed by FTIR. TEM results demonstrated a spherical morphology. In the synthesis, at higher NH4OH concentrations, smaller sized nanoparticles were obtained. The average diameters were generally between 2 and 8?nm for CS MNPs in TEM and between 58 and 103?nm in DLS. The average diameters of bare MNPs were found as around 18?nm both in TEM and DLS. TGA results indicated that the chitosan content of CS MNPs were between 15 and 23?% by weight. Bare and CS MNPs were superparamagnetic. These nanoparticles were found non-cytotoxic on cancer cell lines (SiHa, HeLa). The synthesized MNPs have many potential applications in biomedicine including targeted drug delivery, magnetic resonance imaging?(MRI), and magnetic hyperthermia.  相似文献   

18.
We present a novel and facile method enabling synthesis of iron oxide nanoparticles, which are composed mainly of maghemite according to X-ray diffraction (XRD) and Mössbauer spectroscopy studies. The proposed process is realized by anodic iron polarization in deaerated LiCl solutions containing both water and ethanol. Water seems to play an important role in the synthesis. Morphology of the product was studied by means of transmission electron microscopy and XRD. In the solution containing almost 100% of water a black suspension of round shaped maghemite nanoparticles of 20–40 nm size is obtained. Regulating water concentration allows to control nanoparticle size, which is reduced to 4–6 nm for 5% of water with a possibility to reach intermediate sizes. For 3% or lower water concentration nanoparticles are of a needle-like shape and form a reddish suspension. In this case phase determination is problematic due to a small particle size with the thickness of roughly 3 nm. However, XRD studies indicate the presence of ferrihydrite. Coercivities of the materials are similar to those reported for nanoparticle magnetite powders, whereas the saturation magnetization values are considerably smaller.  相似文献   

19.
In this work, the MWO4 (M = Co, Ni) nanoparticles were successfully synthesized by a facile one-step hydrothermal method and used as novel anode materials for LIBs. The micromorphology of obtained CoWO4 and NiWO4 was uniform nanoparticles with the size of ~60 and ~40 nm, respectively, by structural characterization including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). When tested as lithium-ion battery anode, CoWO4 nanoparticles exhibited a stabilized reversible capacity of 980 mA h g?1 at 200 mA g?1 after 120 cycles and 632 mA h g?1 at 1000 mA g?1 even after 400 cycles. And, the discharge capacity was as high as 550 mA h g?1 at the 400th cycle for NiWO4 nanoparticles. The excellent electrochemical performance could be attributed to the unique nanoparticles structure of the materials, which can not only shorten the diffusion length for electrons and lithium ions but also provide a large specific surface area for lithium storage.  相似文献   

20.
Rare earth elements (RE = Eu3+& Dy3+)and Bi3+ doped Y2O3 nanoparticles were synthesized by urea hydrolysis method in ethylene glycol, which acts as reaction medium as well as a capping agent, at a low temperature of 140 °C,followed by calcination of the obtained product. Transmission electron microscope (TEM) images reveals that ovoid shaped Y2O3 nanoparticles of around 22–24 nm size range were obtained in this method. The respective RE and Bi3+ doped Y2O3 precursor nanoparticles when heated at 600 and 750 °C, retains the same shape as that of the as-synthesized Y2O3 precursor samples. From EDAX spectra, the incorporation of RE ions into the host has been studied. XRD pattern reveals the crystalline nature of the heated nanoparticles and indicate the absence of any impurity phase other than cubic Y2O3.However, the as-synthesized nanoparticles were highly amorphous without the presence of any sharp XRD peaks. Photoluminescence study suggests that the synthesized samples could be used as red (Eu3+), yellow (Dy3+), blue and green (Bi3+)emitting phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号