首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the magnetization of a system of γ-Fe2O3 (0.68 vol.%) nanoparticles isolated in an SiO2 amorphous matrix placed in an alternating magnetic field with a frequency of 640 Hz and in the temperature range of (77-300) K. Compared to temperatures closer to 300 K (where the system has a superparamagnetic behaviour), at lower temperatures, the magnetization has a dynamic hysteresis loop due to the magnetization's phase shift between the field and the magnetization. The delay of the magnetization (attributed to the Néel relaxation processes) increases with the decrease of temperature. It has been shown that the relaxation time resulting from the Néel theory is determined by an effective anisotropy constant ( K ) that takes into account the magnetocrystalline anisotropy, as well as the shape, surface and strain anisotropies. In the following we will show that the surface and strain anisotropy components have the most significant influence. When the temperature decreases from 300 to 77 K, the relative increase of the saturation magnetization of the nanoparticles is much higher than that of the (spontaneous) saturation magnetization of bulk γ-Fe2O3. This increase is due to the increase of the mean magnetic diameter of the particles attached to the core of aligned spins, from 10.16 nm to 11.70 nm, as a result of the modification of the superexchange interaction in the surface layer. Received 25 April 2002 / Received in final form 11 August 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: ccaizer@physics.uvt.ro  相似文献   

2.
We have investigated the quantum J 1 - J 2 - J 3 model on the honeycomb lattice with exact diagonalizations and linear spin-wave calculations for selected values of J 2 / J 1 , J 3 / J 1 and antiferromagnetic (J 1 > 0) or ferromagnetic (J 1 < 0) nearest neighbor interactions. We found a variety of quantum effects: “order by disorder" selection of a Néel ordered ground-state, good candidates for non-classical ground-states with dimer long range order or spin-liquid like. The purely antiferromagnetic Heisenberg model is confirmed to be Néel ordered. Comparing these results with those observed on the square and triangular lattices, we enumerate some conjectures on the nature of the quantum phases in the isotropic models. Received 17 November 2000 and Received in final form 21 January 2001  相似文献   

3.
Electrical resistivity and calorimetric measurements on Dy 3 Coshow that below the Néel temperature (T N =44 K) the non-collinear antiferromagnetic structure exhibits field-induced magnetic phase transitions of a first-order type along all principal axes, accompanied by a strongly anisotropic giant magnetoresistance and by a change of the Sommerfeld coefficient of the specific heat. Quantum tunnelling of the magnetization appears to be possible for T < 0.6 K. Received 15 July 1999 and Received in final form 6 December 1999  相似文献   

4.
Magnetic phase transition in the CsDyW2O8 magnet has been studied by means of low temperature specific heat C ( T ) measurements. The magnetic ordering temperature of the Dy3+ sublattice was established to be 1.34 K. The experimental results indicate on the antiferromagnetic character of interactions between Dy3+ ions. The behavior of the C ( T ) dependencies above and below T N is discussed in frames of different theoretical models. The measurements data on temperature and field dependencies of magnetization are used to calculate the exchange and dipole-dipole interactions energy and to determine the possible magnetic structure of the ground state. Received 7 January 2002 / Received in final form 15 May 2002 Published online 7 September 2002  相似文献   

5.
Magnetic properties of isolated DyN clusters are studied in a molecular beam performing Stern-Gerlach experiments. The magnetizations μ z of DyN are measured in dependence of the magnetic field strength B = 0-1.6 T and at nozzle temperatures T n = 18 K and T n = 300 K. At room temperature the magnetization augments linear with the field following a simple paramagnetic model. At T n = 18 K the magnetization curves saturate at field strengths B ≥0.8 T. To explain the magnetization process at low temperatures two models are discussed: A model for adiabatic magnetization based on cluster rotation effects and a modified van-Vleck model. Received 30 November 2000  相似文献   

6.
The magnetic excitations in the antiferromagnetic phase of HoNi2B2C are studied by inelastic neutron scattering on single crystals for the first time. Spectra measured at constant T = 2 K along symmetry directions of the reciprocal space are well explained in terms of crystal electric field (CEF) magnetic excitons within the J = 8 ground state multiplet of Ho3+. Very modest bandwidth with planar energy dispersion describes the magnetic exciton dynamics. A perturbative model approach consisting of the CEF states in the effective exchange mean-field provides a simple but applicable characterization of the experimental observations. The microscopic determination of the relevant exchange parameters is discussed in connection with previous works on the subject. Received 25 February 2002 / Received in final form 13 May 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: nordal.cavadini@psi.ch  相似文献   

7.
The two-dimensional (2D) Heisenberg model with anisotropic exchange (Δ = 1−J x /J z ) and S=1/2 is investigated by the quantum Monte Carlo method. The energy, susceptibility, specific heat, spin-spin correlation functions, and correlation radius are calculated. The sublattice magnetization (σ) and the Néel temperature of the anisotropic antiferromagnet are logarithmic functions of the exchange anisotropy: 1/σ+1+0.13(1)ln(1/Δ). Crossover of the static magnetic structural factor as a function of temperature from power-law to exponential occurs for T c /J≈0.4. The correlation radius can be approximated by 1/ξ=2.05T 1.0(6)/exp(1.0(4)/T). For La2CuO4 the sublattice magnetization is calculated as σ=0.45, the exchange is J=(1125–1305) K; for Er2CuO4 J∼625 K and the exchange anisotropy Δ∼0.003. The temperature dependence of the static structural magnetic factor and the correlation radius above the Néel temperature in these compounds can be explained by the formation of topological excitations (spinons). Fiz. Tverd. Tela (St. Petersburg) 41, 116–121 (January 1999)  相似文献   

8.
We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ( T ) ∼ C /(Θ + T ) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the “impurity” susceptibility ( T ) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T ( T ) = C imp 1 + T imp / T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T ( T ) = A ln( T / T c ), where T c increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility ( T ) which suggests the existence of antiferromagnetic correlations at very low temperature. Received 17 July 2001  相似文献   

9.
The magnetic structure of tetragonal insulating YBa2Cu3-xLixOy has been studied as a function of x and y. The Néel temperature and the mean ordered magnetic moment on the Cu2 sites were determined by neutron powder diffraction measurements. The decrease of these two parameters as compared to YBa2Cu3O6 is much stronger for lithium than for zinc substitution. The difference is quantitatively explained by the presence of holes created in the CuO2 planes. These holes arise from the substitution of plane Cu2+ by Li+. We suggest an explanation why such holes are not seen for the same substitution of plane Cu2+ by Li+ in orthorhombic superconducting YBa2Cu3-xLixO 7 - δ . Received 31 October 2001 and Received in final form 6 March 2002 Published online 25 June 2002  相似文献   

10.
Accurate ab initio calculations on embedded Cu4O12 square clusters, fragments of the La2CuO4 lattice, confirm a value of the nearest neighbor antiferromagnetic coupling (J = 124 meV) previously obtained from ab initio calculations on bicentric clusters and in good agreement with experiment. These calculations predict non negligible antiferromagnetic second-neighbor interaction (J' = 6.5 meV) and four-spin cyclic exchange (K = 14 meV), which may affect the thermodynamic and spectroscopic properties of these materials. The dependence of the magnetic coupling on local lattice distortions has also been investigated. Among them the best candidate to induce a spin-phonon effect seems to be the movement of the Cu atoms, changing the Cu-Cu distance, for which the variation of the nearest neighbor magnetic coupling with the Cu-O distance is Δ J d Cu - O ∼ 1700 cm-1?-1. Received 20 November 2000  相似文献   

11.
Polycrystalline two-layered perovskite La2.5-xK0.5+xMn2O 7 + δ (0 < x < 0.5) samples have been prepared by a modified sol-gel method and their magnetoresistance and magnetocaloric effects have been studied. A large deviation between the metal-insulator (MI) transition temperature (T ρ ) and the magnetic transition temperature (TC) is observed. Large magnetoresistance (MR) effects with Δρ/ρ of 40% at 12 kOe are obtained in wide temperature ranges. The maximum of the magnetic entropy change peaks at its Curie temperature (TC), far above its MI transition temperature (T ρ ). The large magnetic entropy change (1.4 J/kg.K) is obtained in the sample La2.5-xK0.5+xMn2O 7 + δ (x = 0.35) upon 10 kOe applied magnetic field. Received 2 May 2002 / Received in final form 1st October 2002 Published online 19 December 2002 RID="a" ID="a"e-mail: wzhong@ufp.nju.edu.cn  相似文献   

12.
Orthorhombic EuPdSb is known to undergo two magnetic transitions, at 12 K and at T N≃ 18 K, and in phase III (T < 12 K), single crystal magnetisation data have shown that the spin structure is collinear antiferromagnetic, with magnetic moments along the crystal a axis. From a 151Eu M?ssbauer absorption study, we show that, at any temperature within phase III, all the moments have equal sizes, and that in phase II (12 K< T <18 K) the magnetic structure is modulated and incommensurate with the lattice spacings. The modulation is close to a pure sine-wave just below T N = 18 K, and it squares up as temperature is lowered. We measured the thermal variations of the first and third harmonics of the moment modulation, and we could determine the first and third harmonics of the exchange coupling. We furthermore show that the antiferromagnetic-incommensurate transition at 12 K is strongly first order, with a hysteresis of 0.05 K, and that the incommensurate-paramagnetic transition at 18 K is weakly first order. Finally, we present an explanation of the spin-flop transition observed in the single crystal magnetisation data in phase III when || in terms of an anisotropic molecular field tensor. Received 17 January 2001 and Received in final form 20 March 2001  相似文献   

13.
EPR and 7Li NMR measurements were performed in the distorted inverse spinel V(LiCu)O4 down to 1.5 K. Anisotropy effects on magnetic resonance spectra due to the Jahn-Teller distortion of the oxygen octahedra surrounding the copper ions are discussed. The estimation of the spin-spin interactions deduced from the EPR-relaxation rate Δ H reveals a situation comparable to the prototypical one-dimensional S = 1/2 Heisenberg antiferromagnet CuGeO3. Approaching three-dimensional antiferromagnetic order ( T N ≈ 2 K) from above, both magnetic relaxation rates, Δ H EPR and 7 (1/ T 1 ), respectively, exhibit nearly the same critical divergence reminding to the onset of three-dimensional order in two-dimensional layered systems. Received 22 January 2001 and Received in final form 6 May 2001  相似文献   

14.
We have measured the zero field and field cooled magnetization of the lightly oxygen doped Cu-rich La2CuO 4 + δ in a wide temperature range (5 K to 350 K). The data together with the evolution of the magnetic hysteresis loop suggest that the ferromagnetism with Curie temperature of 280 K coexists with superconductivity below the transition temperature ∼ 34 K. The coexistence occurs in the hole-rich clusters of size ? 150 nm, which are electronic phase separated from the hole-poor antiferromagnetic background. Received 17 October 2001  相似文献   

15.
A quantum Monte Carlo procedure is used to calculate the energy, sublattice magnetization, Néel temperature, and the slopes of the S=[1/T N(x=0)]dT N(x)/dx curves as functions of the hole concentration and the exchange anisotropy Δ=1−J x,y/J z in the Heisenberg model with anisotropic negative interactions between nearest neighbors in a square lattice with dilution among the lattice sites. The slope diverges in the limit Δ→0: S∼ln(6.5/Δ). Fiz. Tverd. Tela (St. Petersburg) 39, 898–900 (May 1997)  相似文献   

16.
The magnetic transport properties have been measured for La0.67-xYxCa0.33MnO3 ( 0 ⩽ x ⩽ 0.14) system. It was found that the transition temperature T p almost linearly moves to higher temperature as H increases. Electron spin resonance confirms that above T p , there exist ferromagnetic clusters. From the magnetic polaron point of view, the shift of T p vs. H was understood, and it was estimated that the size of the magnetic polaron is of 9.7 ∼ 15.4 ? which is consistent with the magnetic correlation length revealed by the small-angle neutron-scattering technique. The transport properties at temperatures higher than T p conform to the variable-range hopping mechanism. Received 27 August 2002 / Received in final form 2 December 2002 Published online 14 March 2003  相似文献   

17.
The magnetic behaviour of nanoparticles of antiferromagnetic artificial ferritin has been investigated by 57Fe M?ssbauer absorption spectroscopy and magnetization measurements, in the temperature range 2.5-250 K and with magnetic fields up to 7 T. Samples containing nanoparticles with an average number of 57Fe atoms ranging from 400 to 2 500 were studied. By analysing the magnetic susceptibility and zero field M?ssbauer data, the anisotropy energy per unit volume is found, in agreement with some of the earlier studies, to have a value typical for ferric oxides, i.e. a few 105 ergs/cm3. By comparing the results of the two experimental methods at higher fields, we show that, contrary to what is currently assumed, the uncompensated magnetization of the ferritin cores in the superparamagnetic regime does not follow a Langevin law. For magnetic fields below the spin-flop field, we propose an approximate law for the field and temperature variation of the uncompensated magnetization, which was early evoked by Néel but has so far never been applied to real antiferromagnetic systems. More generally, this approach should apply to randomly oriented antiferromagnetic nanoparticles systems with weak uncompensated moments. Received 20 January 2000  相似文献   

18.
Using powder neutron diffraction techniques, we have examined the magnetic order of the pseudoternary compound Ho(Rh0.3Ir0.7)4B4 below the Néel temperature TN=2.7K. The magnetic structure consists of stacked antiferromagnetic basal plane sheets forming a body centered tetragonal unit cell, with a sublattice magnetization corresponding to 9.6±0.6μB per Ho3+ion at 1.5 K. Magnetic intensity versus temperature measurements indicate that the transition is second order and reveal no anomalous effects when the compound becomes superconducting at Tc=1.34K.  相似文献   

19.
We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic Heisenberg model on a stacked honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatures, the thermodynamic quantities (two-spin correlation functions, internal energy, magnetic susceptibility, staggered magnetization, Néel temperature, correlation length) and the spin-excitation spectrum are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. The Néel temperature is calculated for arbitrary interlayer couplings. Our results are in a good agreement with numerical computations for finite clusters and with available experimental data on the β-Cu2V2O2 compound.  相似文献   

20.
A neutron diffraction study, as a function of temperature, of the title compounds is presented. The whole family (space group Immm, a ≈ 3.8?, b ≈ 5.8?, c ≈ 11.3?) is structurally characterised by the presence of flattened NiO6 octahedra that form chains along the a-axis, giving rise to a strong Ni-O-Ni antiferromagnetic interaction. Whereas for Y-compound only strong 1D correlations exist above 1.5 K, presenting the Haldane gap characteristic of 1D AF chain with integer spin, 3D AF ordering is established simultaneously for both R and Ni sublattices at temperatures depending on the rare earth size and magnetic moment. The magnetic structures of R2BaNiO5 ( R = Nd, Tb, Dy, Ho, Er and Tm) have been determined and refined as a function of temperature. The whole family orders with a magnetic structure characterised by the temperature-independent propagation vector = (1/2, 0, 1/2). At 1.5 K the directions of the magnetic moments differ because of the different anisotropy of the rare earth ions. Except for Tm and Yb (which does not order above 1.5 K), the magnetic moment of the R3+ cations are close to the free-ion value. The magnetic moment of Ni2+ is around 1.4 , the strong reduction with respect to the free-ion value is probably due to a combination of low-dimensional quantum effects and covalency. The thermal evolution of the magnetic structures from T N down to 1.5 K is studied in detail. A smooth re-orientation, governed by the magnetic anisotropy of R3+, seems to occur below and very close to T N in some of these compounds: the Ni moment rotates from nearly parallel to the a-axis toward the c-axis following the R moments. We demonstrate that for setting up the 3D magnetic ordering the R-R exchange interactions cannot be neglected. Received 19 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号