首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of Kpmf (pmf(-) = anion of N,N'-bis(pyrimidyl-2-yl)formamidine, Hpmf) with divalent copper salt CuX2 afforded the linear trinuclear complexes of the type [Cu3(pmf)4](X)2 (X = BF4, 1; NO3, 2; ClO4, 3), while reaction of Kpmf with monovalent copper salt CuX gave the linear tetranuclear complexes of the type Cu4(pmf)4X2 (X = Cl, 4; Br, 5). The copper atoms of complexes 1-5 are helically bridged by four pmf(-) ligands, resulting in three different coordination modes for the pmf(-) ligands. In complexes 1-3, one pmf(-) ligand adopts a new coordination mode with the two amine nitrogen atoms chelating to the central copper atom, while the other three feature chelation by one pyrimidyl and one adjacent amine nitrogen atoms. The Cu(II)...Cu(II) distances are 2.729(2) and 2.825(2) A for 1, 2.762(1) and 2.832(1) A for 2 and 2.732(1) and 2.827(1) A for 3. In complexes 4 and 5, the pmf(-) ligands are coordinated to the copper atoms in tetradentate fashion with each nitrogen atom coordinating to one Cu atom. The Cu...Cu distances are 2.580(1) and 2.549(1) A for 4 and 2.582(1) and 2.561(1) A for 5. Antiferromagnetic interactions between the copper ions are observed with calculated g and J values of 2.03(1) and -188(2) cm(-1) for 1, 2.09(1) and -268(3) cm(-1) for 2, and 2.09(1) and -486(2) cm(-1) for 5. By comparing the magnetic data it can be shown that the bonding mode of the pmf(-) ligand is one of the important factors in determining the strengths of the Cu...Cu interactions in linear trinuclear and tetranuclear copper complexes.  相似文献   

2.
Copper(I) and copper(II) complexes possessing a series of related ligands with pyridyl-containing donors have been investigated. The ligands are tris(2-pyridylmethyl)amine (tmpa), bis[(2-pyridyl)methyl]-2-(2-pyridyl)ethylamine (pmea), bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine (pmap), and tris[2-(2-pyridyl)ethyl]amine (tepa). The crystal structures of the protonated ligand H(tepa)ClO(4), the copper(I) complexes [Cu(pmea)]PF(6) (1b-PF(6)), [Cu(pmap)]PF(6) (1c-PF(6)), and copper(II) complexes [Cu(pmea)Cl]ClO(4).H(2)O (2b-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4).H(2)O (2c-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4) (2c-ClO(4)), and [Cu(pmea)F](2)(PF(6))(2) (3b-PF(6)) were determined. Crystal data: H(tepa)ClO(4), formula C(21)H(25)ClN(4)O(4), triclinic space group P1, Z = 2, a = 10.386(2) A, b = 10.723(2) A, c = 11.663(2) A, alpha = 108.77(3) degrees, beta = 113.81(3) degrees, gamma = 90.39(3) degrees; 1b-PF(6), formula C(19)H(20)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 14.413(3) A, b = 16.043(3) A, c = 18.288(4) A, alpha = beta = gamma = 90 degrees; (1c-PF(6)), formula C(20)H(22)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 13.306(3) A, b = 16.936(3) A, c = 19.163(4) A, alpha = beta = gamma = 90 degrees; 2b-ClO(4).H(2)O, formula C(19)H(22)Cl(2)CuN(4)O(5), triclinic space group P1, Z = 4, a = 11.967(2) A, b = 12.445(3) A, c = 15.668(3) A, alpha = 84.65(3) degrees, beta = 68.57(3) degrees, gamma = 87.33(3) degrees; 2c-ClO(4).H(2)O, formula C(20)H(24)Cl(2)CuN(4)O(5), monoclinic space group P2(1)/c, Z = 4, a = 11.2927(5) A, b = 13.2389(4) A, c = 15.0939(8) A, alpha = gamma = 90 degrees, beta = 97.397(2) degrees; 2c-ClO(4), formula C(20)H(22)Cl(2)CuN(4)O(4), monoclinic space group P2(1)/c, Z = 4, a = 8.7682(4) A, b = 18.4968(10) A, c = 13.2575(8) A, alpha = gamma = 90 degrees, beta = 94.219(4) degrees; 3b-PF(6), formula [C(19)H(20)CuF(7)N(4)P](2), monoclinic space group P2(1)/n, Z = 2, a = 11.620(5) A, b = 12.752(5) A, c = 15.424(6) A, alpha = gamma = 90 degrees, beta = 109.56(3) degrees. The oxidation of the copper(I) complexes with dioxygen was studied. [Cu(tmpa)(CH(3)CN)](+) (1a) reacts with dioxygen to form a dinuclear peroxo complex that is stable at low temperatures. In contrast, only a very labile peroxo complex was observed spectroscopically when 1b was reacted with dioxygen at low temperatures using stopped-flow kinetic techniques. No dioxygen adduct was detected spectroscopically during the oxidation of 1c, and 1d was found to be unreactive toward dioxygen. Reaction of dioxygen with 1a-PF(6), 1b-PF(6), and 1c-PF(6) at ambient temperatures leads to fluoride-bridged dinuclear copper(II) complexes as products. All copper(II) complexes were characterized by UV-vis, EPR, and electrochemical measurements. The results manifest the dramatic effects of ligand variations and particularly chelate ring size on structure and reactivity.  相似文献   

3.
Ohi H  Tachi Y  Itoh S 《Inorganic chemistry》2006,45(26):10825-10835
The structure and O2-reactivity of copper(I) complexes supported by novel ligands, Pye2 (1,3,5-triethyl-2,4-bis((N-benzyl-N-(2-(pyridin-2-yl)ethyl)-)aminomethyl)benzene), Pye3 (1,3,5-triethyl-2,4,6-tris((N-benzyl-N-(2-(pyridin-2-yl)ethyl))aminomethyl)benzene), MePym2 (1,3,5-triethyl-2,4-bis((N-benzyl-N-(6-methylpyridin-2-ylmethyl))aminomethyl)benzene), and MePym3 (1,3,5-triethyl-2,4,6-tris((N-benzyl-N-(6-methylpyridin-2-ylmethyl))aminomethyl)benzene) have been examined. The ligands are designed to construct mono-, di-, and trinuclear copper(I) complexes by connecting two or three pyridylalkylamine metal-binding sites to a 1,3,5-triethylbenzene spacer. Thus, the reaction of the ligands with [CuI(CH3CN)4]X (X = PF6, CF3SO3) or CuICl gave the expected mononuclear copper(I) complexes [CuI(Pye2)(CF3SO3)] (1) and [CuI(Pye3)](CF3SO3) (2), dinuclear copper(I) complex [CuI2(MePym2)(Cl)]CuICl2 (3), and trinuclear copper(I) complex [CuI3(MePym3)(CH3CN)3](CF3SO3)3 (4), the structures of which were determined by X-ray crystallographic analysis. The mononuclear copper(I) complexes, 1 and 2, exhibit a distorted three-coordinate T-shape structure and a trigonal planar structure, respectively, which are very close to the coordination geometry of the CuA site of PHM (peptidylglycine alpha-hydroxylating monooxygenase) and the CuB site of CcO (cytochrome c oxidase). Notably, 1 and 2 showed a significantly high oxidation potential (990 mV vs SCE), thus showing virtually no reactivity toward O2. On the other hand, the metal centers of the dinuclear and trinuclear copper(I) complexes, 3 and 4, exhibit a distorted trigonal planar geometry and a trigonal pyramidal geometry, respectively. In contrast to the mononuclear copper(I) complexes, these dinuclear and trinuclear copper(I) complexes reacted with O2 to induce an aromatic ligand hydroxylation reaction involving an NIH-shift of one of the ethyl substituents on the benzene spacer. The NIH-shift of the alkyl substituent on the aromatic ring is strong evidence of the electrophilic aromatic substitution mechanism, although the active oxygen intermediate could not be directly detected during the course of the reaction. The biological relevance of the copper(I) complexes is also discussed on the basis of structure and O2-reactivity.  相似文献   

4.
Three malonato-bridged copper(II) complexes of the formulas [[Cu(H2O)3][Cu(C3H2O4)2(H2O)]]n (1), [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]] [Cu(C3H2O4)2(H2O)2][[Cu(H2O)4][Cu(C3H2O4)2(H2O)2]] (2), and [Cu(H2O)4][Cu(C3H2O4)2(H2O)2] (3) (C3H2O4 = malonate dianion) have been prepared, and the structures of the two former have been solved by X-ray diffraction methods. The structure of compound 3 was already known. Complex 1 crystallizes in the orthorhombic space group Pcab, Z = 8, with unit cell parameters of a = 10.339(1) A, b = 13.222(2) A, and c = 17.394(4) A. Complex 2 crystallizes in the monoclinic space group P2/c, Z = 4, with unit cell parameters of a = 21.100(4) A, b = 21.088(4) A, c = 14.007(2) A, and beta = 115.93(2) degrees. Complex 1 is a chain compound with a regular alternation of aquabis(malonato)copper(II) and triaquacopper(II) units developing along the z axis. The aquabis(malonato)copper(II) unit acts as a bridging ligand through two slightly different trans-carboxylato groups exhibiting an anti-syn coordination mode. The four carboxylate oxygens, in the basal plane, and the one water molecule, in the apical position, describe a distorted square pyramid around Cu1, whereas the same metal surroundings are observed around Cu2 but with three water molecules and one carboxylate oxygen building the equatorial plane and a carboxylate oxygen from another malonato filling the apical site. Complex 2 is made up of discrete mono-, di-, and trinuclear copper(II) complexes of the formulas [Cu(C3H2O4)2(H2O)2]2-, [[Cu(H2O)4] [Cu(C3H2O4)2(H2O)2]], and [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]]2+, respectively, which coexist in a single crystal. The copper environment in the mononuclear unit is that of an elongated octahedron with four carboxylate oxygens building the equatorial plane and two water molecules assuming the axial positions. The neutral dinuclear unit contains two types of copper atoms, one that is six-coordinated, as in the mononuclear entity, and another that is distorted square pyramidal with four water molecules building the basal plane and a carboxylate oxygen in the apical position. The overall structure of this dinuclear entity is nearly identical to that of compound 3. Finally, the cationic trimer consists of an aquabis(malonato)copper(II) complex that acts as a bismonodentate ligand through two cis-carboxylato groups (anti-syn coordination mode) toward two tetraaqua-copper(II) terminal units. The environment of the copper atoms is distorted square pyramidal with four carboxylate oxygens (four water molecules) building the basal plane of the central (terminal) copper atom and a water molecule (a carboxylate oxygen) filling the axial position. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-290 K. Overall, ferromagnetic behavior is observed in the three cases: two weak, alternating intrachain ferromagnetic interactions (J = 3.0 cm-1 and alpha J = 1.9 cm-1 with H = -J sigma i[S2i.S2i-1 + alpha S2i.S2i+1]) occur in 1, whereas the magnetic behavior of 2 is the sum of a magnetically isolated spin doublet and ferromagnetically coupled di- (J3 = 1.8 cm-1 from the magnetic study of the model complex 3) and trinuclear (J = 1.2 cm-1 with H = -J (S1.S2 + S1.S3) copper(II) units. The exchange pathway that accounts for the ferromagnetic coupling, through an anti-syn carboxylato bridge, is discussed in the light of the available magneto-structural data.  相似文献   

5.
Cobalt(II), nickel(II), and copper(II) (1, 2, and 3) complexes of the dianionic form of the bis(phenolate) ligand N,N-bis(3,4-dimethyl-2-hydroxybenzyl)-N',N'-dimethylethylenediamine (H2L) have been synthesized by electrochemical oxidation of the appropriate metal in an acetonitrile solution of the ligand. When copper is used as the anode, the addition of 1,10-phenanthroline to the electrolytic phase gave rise to a different compound [CuL]2.2CH3CN (4). The compounds [CoL]2.2CH3CN (1), [Ni2L2(H2O)].H2O (2), [CuL]2.3H2O (3), and [CuL]2.2CH3CN (4) were characterized by microanalysis, IR, electronic spectroscopy, FAB mass spectrometry, magnetic measurements and by single-crystal X-ray diffraction. The crystal structures show that the complexes have a dinuclear structure. In compounds 1, 3, and 4, two metal ions are coordinated by the two amine nitrogens and the two phenol oxygen atoms of a deprotonated pendant phenol ligand, with one phenolic oxygen atom from ligand acting as a bridge. In compounds 1 and 3, each metal center has a geometry that is closest to trigonal bipyramidal. Magnetic susceptibility data for both compounds show an antiferromagnetic coupling with 2J = -15 cm(-1) for the cobalt(II) complex and a strong antiferromagnetic coupling with 2J = -654 cm(-1) for the copper(II) complex. However, in 4 the geometry around the metal is closer to square pyramidal and the compound shows a lower antiferromagnetic coupling (2J = -90 cm(-1)) than in 3. The nickel atoms in the dimeric compound 2 are hexacoordinate. The NiN2O4 chromophore has a highly distorted octahedral geometry. In this structure, a dianionic ligand binds to one nickel through the two amine nitrogen atoms and the two oxygen atoms and to an adjacent nickel via one of these oxygen atoms. The nickel atoms are linked through a triple oxygen bridge involving two phenolic oxygens, each from a different ligand, and an oxygen atom from a water molecule. The two nickel ions in 2 are ferromagnetically coupled with 2J = 19.8 cm(-1).  相似文献   

6.
Wang FQ  Mu WH  Zheng XJ  Li LC  Fang DC  Jin LP 《Inorganic chemistry》2008,47(12):5225-5233
Four copper(II) complexes [Cu3(PZHD)2(2,2'-bpy)2(H2O)2].3H2O (1), [Cu3(DHPZA)2(2,2'-bpy)2] (2), [Cu(C2O4)phen(H2O)].H2O (3), and [Cu3(PZTC)2(2,2'-bpy)2].2H2O (4) were synthesized by hydrothermal reactions, in which the complexes 1-3 were obtained by the in situ Cu(II)/H3PZTC reactions (PZHD3- = 2-hydroxypyrazine-3,5-dicarboxylate, 2,2'-bpy = 2,2'-bipyridine, DHPZA3- = 2,3-dihydroxypyrazine-5-carboxylate, C2O42- = oxalate, phen = 1,10-phenanthroline, and H3PZTC = pyrazine-2,3,5-tricarboxylic acid). The Cu(II)/H3PZTC hydrothermal reaction with 2,2'-bpy, without addition of NaOH, results in the formation of complex 4. The complexes 1-4 and transformations from H3PZTC to PZHD3-, DHPZA3-, and C2O4(2-) were characterized by single-crystal X-ray diffraction and theoretical calculations. In the complexes 1, 2, and 4, the ligands PZHD3-, DPHZA3-, and PZTC3- all show pentadentate coordination to Cu(II) ion forming three different trinuclear units. The trinuclear units in 1 are assembled by hydrogen-bonding and pi-pi stacking to form a 3D supramolecular network. The trinuclear units in 2 acting as building blocks are connected by the carboxylate oxygen atoms forming a 2D metal-organic framework (MOF) with (4,4) topology. While the trinuclear units in 4 are linked together by the carboxylate oxygen atoms to form a novel 2D MOF containing right- and left-handed helical chains. The theoretical characterization testifies that electron transfer between OH- and Cu2+ and redox of Cu 2+ and Cu+ are the most important processes involved in the in situ copper Cu(II)/H3PZTC reactions, forming complexes of 1-3.  相似文献   

7.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

8.
The interaction of Cu(II) with the ligand tdci (1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol) was studied both in the solid state and in solution. The complexes that were formed were also tested for phosphoesterase activity. The pentanuclear complex [Cu(5)(tdciH(-2))(tdci)(2)(OH)(2)(NO(3))(2)](NO(3))(4).6H(2)O consists of two dinuclear units and one trinuclear unit, having two shared copper(II) ions. The metal centers within the pentanuclear structure have three distinct coordination environments. All five copper(II) ions are linked by hydroxo/alkoxo bridges forming a Cu(5)O(6) cage. The Cu-Cu separations of the bridged centers are between 2.916 and 3.782 A, while those of the nonbridged metal ions are 5.455-5.712 A. The solution equilibria in the Cu(II)-tdci system proved to be extremely complicated. Depending on the pH and metal-to-ligand ratio, several differently deprotonated mono-, di-, and trinuclear complexes are formed. Their presence in solution was supported by mass, CW, and pulse EPR spectroscopic study, too. In these complexes, the metal ions are presumed to occupy tridentate [O(ax),N(eq),O(ax)] coordination sites and the O-donors of tdci may serve as bridging units between two metal ions. Additionally, deprotonation of the metal-bound water molecules may occur. The dinuclear Cu(2)LH(-3) species, formed around pH 8.5, provides outstanding rate acceleration for the hydrolysis of the activated phosphodiester bis(4-nitrophenyl)phosphate (BNPP). The second-order rate constant of BNPP hydrolysis promoted by the dinuclear complex (T = 298 K) is 0.95 M(-1) s(-1), which is ca. 47600-fold higher than that of the hydroxide ion catalyzed hydrolysis (k(OH)). Its activity is selective for the phosphodiester, and the hydrolysis was proved to be catalytic. The proposed bifunctional mechanism of the hydrolysis includes double Lewis acid activation and intramolecular nucleophilic catalysis.  相似文献   

9.
Reactions of two hydrated cupric salts (CuCl(2).2H(2)O and Cu(ClO(4))(2).6H(2)O) with three azopyridyl ligands, viz. 2-[(arylamino)phenylazo]pyridine [aryl = phenyl (HL(1a)), p-tolyl (HL(1b)), and 2-thiomethyl phenyl (HL(1c))], 2-[2-(pyridylamino)phenylazo]pyridine (HL(2)), and 2-[3-(pyridylamino)phenylazo]pyridine (HL(3)), afford the mononuclear [CuClL(1)] (1), dinuclear [Cu(2)X(2)L(2)(2)](n)()(+) (X = Cl, H(2)O, ClO(4); n = 0, 1; 2, 3), and polynuclear [CuClL(3)](n)() (4) complexes, respectively, in high yields. Representative X-ray structures of these complexes 1-4 are reported. X-ray structure analysis of 4 reveals an infinite 1D zigzag chain that adopts a saw-tooth-like structure. Variable-temperature cryomagnetic measurements (2-300 K) on the complexes 2-4 have revealed weak magnetic interactions between the copper centers with J values -1.04, 9.88, and -1.31 cm(-1), respectively. Positive ion ESI mass spectra of the soluble complexes 1-3 are studied which provide the evidence for the integrity of the complexes also in solution. Visible range spectra of the complexes 1-3 in solution consist of intense and broad transitions in the range 700-600 nm. The solid-state spectrum of the insoluble copper complex 4, on the other hand, shows a structured band near 700 nm. The intensities of the transitions of the dinuclear complexes are much higher than those of the corresponding mononuclear copper complexes. Redox properties of the present copper complexes are reported. Notably, the dinuclear complex, 3, displays two successive redox processes: Cu(II)Cu(II) right harpoon over left harpoon Cu(II)Cu(I) right harpoon over left harpoon Cu(I)Cu(I). It catalyzes aerial oxidation of L-ascorbic acid. The catalytic cycle is most effective up to H(2)A/3 (H(2)A = L-ascorbic acid) molar ratio of 20:1.  相似文献   

10.
A new dioxime ligand, (2E,3E)-3-[(6-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino}-pyridin-2-yl)imino]butan-2-one oxime, (H2Pymdo) (3) has been synthesized in H2O by reacting 2,3-butenedione monoxime (2) with 2,6-diaminopyridine. Mono-, di- and tri-nuclear copper(II) complexes of the dioxime ligand (H2Pymdo) and/or 1,10-phenanthroline have been prepared. The dioxime ligand (H2Pymdo) and its copper(II) complexes were characterized by 1H-n.m.r., 13C-n.m.r. and elemental analyses, magnetic moments, i.r. and mass spectral studies. The mononuclear copper(II) complex of H2Pymdo was found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). In the dinuclear complexes, in which the first Cu(II) ion was complexed with nitrogen atoms of the oxime and imine groups, the second Cu(II) ion is ligated with dianionic oxygen atoms of the oxime groups and are linked to the 1,10-phenanthroline nitrogen atoms. The trinuclear copper(II) complex (6) was formed by coordination of the third Cu(II) ion with dianionic oxygen atoms of each of two molecules of the mononuclear copper(II) complexes. The data support the proposed structure of H2Pymdo and its Cu(II) complexes.  相似文献   

11.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

12.
A new sugar-derived Schiff's base ligand N-(3-tert-butyl-2-hydroxybenzylidene)-4,6-O-ethylidene-beta-D-glucopyranosylamine (H3L1) has been developed which afforded the coordinatively labile, alcoholophilic trinuclear Cu(II) complex [Cu3(L1)2(CH3OH)(H2O)] (1). Complex 1 has been further used in the synthesis of a series of alcohol-bound complexes with a common formula of [Cu3(L1)2(ROH)2] (R = Me (2), Et (3), nPr (4), nBu (5), nOct (6)). X-ray structural analyses of complexes 2-6 revealed the collinearity of trinuclear copper(II) centers with Cu-Cu-Cu angles in the range of 166-172 degrees . The terminal and central coppers are bound with NO3 and O4 atoms, respectively, and exhibit square-planar geometry. The trinuclear structures of 2-6 can be viewed as the two {Cu(L1)}- fragments capture a copper(II) ion in the central position, which is further stabilized by a hydrogen-bonding interaction between the alcohol ligands and the sugar C-3 alkoxo group. Complex 2 exhibits a strong antiferromagnetic interaction between the Cu(II) ions (J = -238 cm(-1)). Diffusion of methanol into a solution of complex 1 in a chloroform/THF mixed solvent afforded the linear trinuclear complex [Cu(3)(L1)2(CH3OH)2(THF)2] (7). The basic structure of 7 is identical to complex 2; however, THF binding about the terminal coppers (Cu-O(THF) = 2.394(7) and 2.466(7) A) has introduced the square-pyramidal geometry, indicating that the planar trinuclear complexes 2-6 are coordinatively unsaturated and the terminal metal sites are responsible for further ligations. In the venture of proton-transfer reactions, a successful proton transfer onto the saccharide C-3 alkoxo group has been achieved using 4,6-O-ethylidene-d-glucopyranose, resulting in the self-assembled tetranuclear complex, [Cu4(HL1)4] (8), consisting of the mononuclear Cu(II) chiral building blocks, {Cu(HL1)}.  相似文献   

13.
Summary Copper(II) complexes derived from substituted cinnamic acids 3, 4-dimethoxycinnamic acid (3, 4-DMCH) and 3, 5-dimethoxycinnamic acid (3, 5-DMCH), of the formula [Cu(3, 4-DMC)2]·H2O (1), [Cu(3, 5-DMC)2]·H2O (2) were prepared. The magnetic properties of the complexes suggest dimeric structures typical of copper(II) acetate monohydrate-like complexes. X-band e.s.r. spectra of polycrystalline samples at low temperature are typical of triplet state systems S=1. Their ability to catalyze the aerial oxidation of 3, 5-di-t-butylcatechol was measured spectrophotometrically at 30°C. The complexes are models for oxidases.  相似文献   

14.
He F  Tong ML  Chen XM 《Inorganic chemistry》2005,44(23):8285-8292
Facile one-pot reactions led to the formations of dinuclear [CuLn(hmp)2(NO3)3(H2O)2] (Ln = Tb (1.Tb), Gd (1.Gd), or La (1.La)), and trinuclear [Cu2Ln(mmi)4(NO3)(H2O)2](ClO4)(NO3).2H2O (Ln = Tb (2.Tb) or Gd (2.Gd)) and [Cu2La(mmi)4(NO3)2(H2O)](ClO4).2H2O (2.La) with polydentate ligands 2-(hydroxymethyl)-pyridine and 2-hydroxymethyl-1-methyl-imidazole. In these complexes, each pair of Cu(II) and Ln(III) ions is linked by a double mu-alkoxo bridge. The temperature dependences of the magnetic susceptibilities of 1 and 2 were investigated in the range of 2-300 K. The dinuclear and trinuclear Cu-Gd complexes exhibit ferromagnetic interaction. The coupling constant J values in the heterodinuclear Cu-Gd complexes are correlated to values of the dihedral angles alpha between the two O-Cu-O and O-Gd-O fragments of the bridging CuO2Gd networks, with the largest J value associated with the smallest alpha value. The occurrence of a ferromagnetic interaction between Cu(II) and Gd(III) ions of the trinuclear entity is supported by the field dependence of the magnetization. The field dependence of the magnetization at 2 K of 1.Gd and 2.Gd confirms the nature of the ground state and of the Cu(II)-Gd(III) interaction, while alternating current susceptibility measurements demonstrates out-of-phase ac susceptibility signals of 1.Tb, which is the molecule-based magnetic material of the smallest nuclearity which exhibits frequency-dependent behavior within the 3d-4f mixed-metal systems.  相似文献   

15.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

16.
Three new trinuclear copper(II) complexes, [(CuL(1))(3)(micro(3)-OH)][ClO(4)](2).3 H(2)O (1), [(CuL(2))(3)(micro(3)-OH)][ClO(4)](2).H(2)O (2), and [(CuL(3))(3)(micro(3)-OH)][ClO(4)](2).7 H(2)O (3) have been synthesized from the three tridentate Schiff bases HL(1), HL(2), and HL(3) (HL(1)=6- aminomethyl-3-methyl-1-phenyl-4-azahex-2-en-1-one, HL(2)=6-aminoethyl-3-methyl-1-phenyl-4-azahex-2-en-1-one, and HL(3)=6-aminodimethyl-3-methyl-1-phenyl-4-azahex-2-en-1-one). They have been characterized by X-ray crystallography and IR and UV spectroscopy, and their magnetic properties have been investigated. All the compounds contain a partial cubane [Cu(3)O(4)] core consisting of the trinuclear unit [(CuL)(3)(micro(3)-OH)](2+), perchlorate ions, and water molecules. In each of the complexes, the copper atoms are five-coordinate with a distorted square-pyramidal geometry except complex 1, in which one of the Cu(II) of the trinuclear unit is weakly coordinated to one of the perchlorate ions. Magnetic measurements performed in SQUID MPMS-XL7 using polycrystalline samples at an applied field of 2 kOe indicate a global intramolecular ferromagnetic coupling. Magnetostructural correlations have been calculated on the basis of theoretical models without symmetry restriction. Continuous shape measurements are an appropriate tool for establishing the degree of distortion of the Cu(II) from square-planar geometry. Structural, theoretical, and experimental magnetic data indicate that the higher the degree of distortion, the greater the ferromagnetic coupling.  相似文献   

17.
18.
The reaction of [Cu(L)(H(2)O)](2+) with an excess of thiosulfate in aqueous solution produces a blue to green color change indicative of thiosulfate coordination to Cu(II) [L = tren, Bz(3)tren, Me(6)tren, and Me(3)tren; tren = tris(2-aminoethyl)amine, Bz(3)tren = tris(2-benzylaminoethyl)amine, Me(6)tren = tris(2,2-dimethylaminoethyl)amine, and Me(3)tren = tris(2-methylaminoethyl)amine]. In excess thiosulfate, only [Cu(Me(6)tren)(H(2)O)](2+) promotes the oxidation of thiosulfate to polythionates. Products suitable for single-crystal X-ray diffraction analyses were obtained for three thiosulfate complexes, namely, [Cu(tren)(S(2)O(3))].H(2)O, [Cu(Bz(3)tren)(S(2)O(3))].MeOH, and (H(3)Me(3)tren)[Cu(Me(3)tren)(S(2)O(3))](2)(ClO(4))(3). Isolation of [Cu(Me(6)tren)(S(2)O(3))] was prevented by its reactivity. In each complex, the copper(II) center is found in a trigonal bipyramidal (TBP) geometry consisting of four amine nitrogen atoms, with the bridgehead nitrogen in an axial position and an S-bound thiosulfate in the other axial site. Each structure exhibits H bonding (involving the amine ligand, thiosulfate, and solvent molecule, if present), forming either 2D sheets or 1D chains. The structure of [Cu(Me(3)tren)(MeCN)](ClO(4))(2) was also determined for comparison since no structures of mononuclear Cu(II)-Me(3)tren complexes have been reported. The thiosulfate binding constant was determined spectrophotometrically for each Cu(II)-amine complex. Three complexes yielded the highest values reported to date [K(f) = (1.82 +/- 0.09) x 10(3) M(-1) for tren, (4.30 +/- 0.21) x 10(4) M(-1) for Bz(3)tren, and (2.13 +/- 0.05) x 10(3) M(-1) for Me(3)tren], while for Me(6)tren, the binding constant was much smaller (40 +/- 10 M(-1)).  相似文献   

19.
Deprotonation of the tridentate isoindoline ligand 1,3-bis[2-(4-methylpyridyl)imino]-isoindoline, 4'-MeLH, and reaction with hydrated zinc(II) perchlorate produces an unexpected trinuclear Zn(II) complex, [Zn(3)(4'-MeL)(4)](ClO(4))(2).5H(2)O (1), whereas reaction with hydrated copper(II) perchlorate in methanol produces the expected mononuclear product, [Cu(4'-MeL)(H(2)O)(2)]ClO(4) (2). X-ray diffraction shows that the trinuclear Zn(II) complex (1) contains a linear zinc backbone, and the arrangement of ligands about the outer chiral zinc(II) atoms is helical. The two terminal zinc ions exhibit approximate C(2) site symmetry, with tetrahedral coordination by two pyrrole and two pyridyl nitrogen atoms of the potentially tridentate isoindoline ligands. The central zinc ion exhibits approximate tetrahedral symmetry, with coordination by four pyridyl nitrogen atoms of four different isoindoline ligands. Pyridyl-pyrrole intramolecular pi-stacking interactions contribute to the stability of the trinuclear cation. The structure of the mononuclear copper(II) complex cation in 2 is best described as a distorted trigonal bipyramid. The isoindoline anion binds Cu(II) in both axial positions and one of the equatorial positions; water molecules occupy the other two equatorial positions.  相似文献   

20.
Six new copper(II) complexes of formula [Cu(mu-cbdca)(H2O)]n (1) (cbdca = cyclobutanedicarboxylate), [Cu2(mu-cbdca)2(mu-bipy)2]n (2) (bipy = 4,4'-bipyridine), [Cu(mu-cbdca)(mu-bpe)]n (3) (bpe = 1,2-bis(4-pyridyl)ethane), [Cu(mu-cbdca)(bpy)]2 (4) (bpy = 2,2'-bipyridine), [Cu(terpy)(ClO4)]2(mu-cbdca).H2O (5) (terpy = 2,2':6',2' '-terpyridine), and [Cu(cbdca)(phen) (H2O)].2H2O (6) (phen = 1,10-phenanthroline) were obtained and structurally characterized by X-ray crystallography. Complex 1 is a two-dimensional network with a carboxylate bridging ligand in syn-anti (equatorial-equatorial) coordination mode. Complexes 2 and 3 are formed by chains through syn-anti (equatorial-apical) carboxylate bridges, linked to one another by the corresponding amine giving two-dimensional nets. Complexes 4 and 5 are dinuclear, with the copper ions linked by two oxo (from two different carboxylate) bridging ligands in 4 and with only one carboxylate showing the unusual bis-unidentate mode in complex 5. Complex 6 is mononuclear, with the carboxylate linked to copper(II) in a chelated form. Intermolecular hydrogen bonds and pi-pi stacking interactions build an extended two-dimensional network. Magnetic susceptibility measurements of complexes 1-5 in the temperature range 2-300 K show the occurrence of weak ferromagnetic coupling for 1 and 4 (J = 4.76 and 4.44 cm(-1), respectively) and very weak antiferromagnetic coupling for 2, 3, and 5 (J = -0.94, -0.67, and -1.61 cm(-1), respectively). Structural features and magnetic values are compared with those reported for the similar copper(II) malonate and phenylmalonate complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号