首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
利用密度泛函B3LYP对有限长扶手椅形单壁碳纳米管(3,3),(4,4)和(5,5)吸附O原子的几何结构、电子属性、反应能和红外光谱进行了系统地理论研究,获得了一些有意义的结果,主要包括如下4个方面:(1)2个O原子吸附在管外壁垂直于管轴的C—C键形成开环的轮烯结构,吸附在管内壁形成环氧结构;(2)O原子吸附在管外壁要比吸附在管内壁具有较大的能隙和吸附反应能;(3)与单壁碳纳米管管外壁吸附1个O原子相比,2个O原子吸附在管外壁具有较大的吸附反应能;(4)B3LYP得到的C—O伸缩振动频率与实验一致.  相似文献   

2.
采用密度泛函方法对氢原子在(5,5)椅型碳纳米管上的吸附进行了研究, 分别考察了氢原子覆盖度为5%和10%时的构型和吸附能. 研究结果表明, H原子吸附在管外壁要比管内壁能量上更为有利, 同时第二个H原子倾向于吸附在前一个H原子的吸附位置邻近的碳原子上. 由能带计算结果得知, 吸附一个H原子时, 椅型碳纳米管将由导体转变为半导体; 当第二个H原子处在偶数位时, 纳米管仍保持较好的导电性能, 而吸附在奇数位时将使管的传输能力减弱. 本文进一步通过分析纳米管(共轭体系的分布情况对管传输性质的变化进行解释.  相似文献   

3.
单壁碳纳米管吸附氢气的计算机模拟   总被引:13,自引:0,他引:13  
采用巨正则系统的蒙特卡罗方法(GCMC)模拟常温(T-293K)时氢气在单壁碳纳米管中的吸附过程,氢气分之间、氢气分子与碳原子之间的相互作用采用Lennard-Jones模型,其中,将氢气对整个碳纳米管中所有碳原子的作用进行加和,以获得氢气分子与单根给定半戏的碳纳米管的相互作用模型,研究和讨论了5种半径的碳纳米管在293K时的吸附等温线以及在293K和5MPa时给定半径的碳纳米管的吸附量随管间距离的变化。  相似文献   

4.
利用密度泛函理论研究了NH3在完整和含有缺陷的硼纳米管上的吸附行为以及相关电子性质. 计算结果表明, 对于α硼纳米管, 在不同的直径和手性条件下, NH3均倾向于吸附在配位数为6的顶位上. 电子结构计算结果表明, NH3能够吸附在纳米管表面主要是由于N和B原子产生了较强的相互作用. 表明硼纳米管是一种潜在的NH3气气敏材料.  相似文献   

5.
采用密度泛函理论方法,运用平板模型对噻吩分子在Ni(111)表面的水平吸附进行了结构优化和能量计算.结果表明,hcpA位的吸附最稳定,以bridgeB吸附最不稳定;噻吩吸附在表面上时,S原子向上翘起,4个C原子与边面Ni原子的作用更紧密,表面原子与噻吩的匹配程度决定了吸附的强度和吸附后S—C键的活泼性;噻吩以bridgeA吸附时分子与表面之间的电子给予与反馈最多,分子最活泼,而hcpA位吸附后噻吩分子轨道上电子的能量变稳定,分子并不活泼.  相似文献   

6.
刘子忠  韩飞  封继康  徐爱菊  崔文颖 《化学学报》2011,69(24):2929-2938
应用密度泛函理论优化了锐钛矿型TiO2(001),(110)和(100)晶面结构,发现(001)晶面能量最低.通过对甲醛吸附到(001)面的6种初始猜测方式的几何优化,发现从甲醛H—C—O侧面吸附方式为最稳定的吸附方式,吸附能最大,发生了化学吸附.吸附后甲醛中C—H键增长,键变弱,C—O键缩短,键增强.甲醛中C原子与邻...  相似文献   

7.
采用 DMol 3 模块中广义梯度密度泛函理论(GGA)的Perdew-Burke-Ernzerh(PBE)方法研究含能材料分解气体产物NO, NO2在ZnO(10 1 ˉ 0)表面的吸附和NO2解离生成NO和O的过程. 结果表明, 优化后的吸附构型显示Zn顶位为稳定吸附位点, NO2的吸附能大于NO. 态密度图分析结合差分电荷密度图表明, NO的N原子与表面Zn有相互作用, 电荷从NO转移到表面; NO2的N2p, O2p轨道与表面Zn3d轨道发生杂化, NO2附近积累大量负电荷. 过渡态搜索显示NO2的解离需跨过较高能垒, 不易进行.  相似文献   

8.
采用量子化学的密度泛函理论方法,探讨了苯分子在CuCl(111)表面上不同覆盖度下不同吸附位上的平行吸附行为. 计算结果表明,随覆盖度的减小,吸附作用增强, Cl位上的吸附是稳定的吸附模式,在低覆盖度下吸附能约为74 kJ/mol, 在顶位和穴位上的吸附属于较弱的物理吸附. 同时对吸附前后的电子布居和态密度进行了分析. 吸附过程中,苯分子的π电子向底物转移,同时Cu的 3d轨道的电子反馈给苯的反键π轨道.  相似文献   

9.
采用第一性原理的密度泛函理论研究单个氢原子和多个氢原子在Be(0001)表面吸附性质.给出了氢吸附Be(0001)薄膜表面的原子结构、吸附能、饱和度、功函数、偶极修正等特性参数.同时也讨论了相关吸附性质与氢原子覆盖度(0.06-1.33ML)的关系.计算结果表明:氢原子的吸附位置与覆盖度之间有强烈的依赖关系,覆盖度低于0.67ML时,氢原子能量上易于占据fcc或hcp的中空位置;覆盖度为0.78ML时,中空位与桥位为氢原子的最佳吸附位;覆盖度在0.89到1.00ML时,桥位是氢原子吸附能量最有利的位置;以上覆盖度中Be(0001)表面最外层铍原子的结构均没有发生明显变化.当覆盖度为1.11-1.33ML,高覆盖度下Be(0001)表面的最外层铍原子部分发生膨胀,近邻氢原子渗入到铍表面次层,氢原子易于占据在hcp和桥位.吸附结构中的氢原子比氢分子中的原子稳定.当覆盖度大1.33ML时,计算结果没有发现相对于氢分子更稳定的吸氢结构.同时从分析偶极修正和氢原子吸附垂直高度随覆盖度的变化关系判断氢覆盖度为1.33ML时,在Be(0001)表面吸附达到饱和.  相似文献   

10.
利用密度泛函方法, 模拟金属铜原子簇Cu14(9,4,1)的(100)表面, 对丙烯腈(CH2=CHCN)在Cu(100)面上不同吸附位的吸附状况进行了理论研究. 结果表明: 丙烯腈分子通过端位N原子垂直吸附在金属表面上为弱化学吸附, 部分电荷从丙烯腈分子转移至铜金属簇; 由N原子的孤对电子与金属铜形成弱σ共价键; 顶位是最佳吸附位, 吸附能为40.7391 kJ•mol-1, N原子与金属表面间的平衡距离为0.2279 nm; 其次为桥位和穴位, 吸附能分别为36.2513和30.2158 kJ•mol-1, 平衡距离为0.2194和0.2886 nm; 吸附后C≡N键的强度降低, 活化了丙烯腈分子. 化学吸附使体系的熵减小, 是由于丙烯腈分子的平动和转动因吸附而被限制.  相似文献   

11.
氢气在单壁碳纳米管束的吸附的密度泛函研究   总被引:3,自引:2,他引:3  
张现仁  汪文川 《化学学报》2002,60(8):1396-1404
作者利用密度泛函理论(DFT)计算了氢气在单壁碳纳米管束(SWNTs)中管内 和管间的吸附。考察了温度,孔径以及压力对吸附的分子数密度,重量百分比,单 位体积储存能力以及超额吸附量的影响。DFT计算发现,较大的孔径有利于氢气在 SWNTs中的吸附且氢气在管隙中的吸附不可忽略。计算表明在77 K和6 MPa时,氢气 在2.719 mm的SWNTs的总的吸附的重量百分比分别可达到13.2 wt%,这约是美国能 源部(DOE)目标值的两倍,而单位体积储存能力在DOE目标值附近,而在300 K和 6 MPa时,氢气在2.719 nm的SWNTs的总的吸附的重量百分比仅为1.5 wt%。通过实 验结果与计算结果的比较表明,密度泛函理论的计算结果支持SWNTs有较高的吸附 储氢能力的实验结论。  相似文献   

12.
采用密度泛函理论方法对氢气吸附进行了基准研究.探讨了不同泛函方法,范德华作用及基组大小在计算中对预测氢气吸附能的影响.研究结果表明,不同泛函预测吸附能给出的偏差很大,范德华作用校正不容忽视;基组和模型尺寸影响相对较小;模型越大对基组依赖性越小;选择小的模型可以通过选择较大基组弥补计算的误差.  相似文献   

13.
14.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

15.
载铜活性炭吸附一氧化碳的密度泛函理论计算   总被引:3,自引:0,他引:3  
黎军  马正飞  刘晓勤  姚虎卿 《化学学报》2005,63(10):903-908
应用密度泛函理论和相对论有效核势方法, 用C16H10, C13H9, C12H12原子簇模型模拟活性炭表面, 计算得到了CO在载铜活性炭上的吸附位、吸附构型和吸附能. 研究表明: 载铜活性炭吸附CO的过程, 本质上是Cu(I)通过σ-π配键与CO络合, 形成Cu—C键的过程. 载铜活性炭对CO的络合吸附能在50~60 kJ/mol之间, 远大于活性炭对CO的物理吸附能(9.15 kJ/mol), 因而络合吸附更稳定, 选择性也更高. Cu(I)选择吸附在活性炭表面的顶位和桥位, 一个Cu(I)至多可以吸附一个到两个CO分子, 但吸附一个CO比吸附两个CO稳定.  相似文献   

16.
超临界氢在活性炭上的吸附等温线研究   总被引:17,自引:0,他引:17  
通过77-298K范围内氢在AX-21活性炭上的吸附数据,探讨如何用普通I-型等温线模型处理超临界条件下的吸附等温线,以获取关于超临界吸附系统的正确信息,结果表明,Langmuir方程虽然可用来表达实验数据,但不能提供关于该吸附系统的任何可靠信息,Virial方程虽不是整组数据的最好模型,但却能够可靠地确定Henry定律常数,然后可从vantHoff标绘决定等量吸附热,通过将实验数据拟合到Dubi  相似文献   

17.
The hydrogen‐bond energies of water dimer and water‐formaldehyde complexes have been studied using density functional theory (DFT). Basis sets up to aug‐cc‐pVXZ (X=D, T, Q) were used. It was found that counterpoise corrected binding energies using the aug‐cc‐pVDZ basis set are very close to those predicted with the aug‐cc‐pVQZ set. Comparative studies using various DFT functionals on these two systems show that results from B3LYP, mPW1PW91 and PW91PW91 functionals are in better agreements with those predicted using high‐level ab initio methods. These functionals were applied to the study of hydrogen bonding between guanine (G) and cytosine (C), and between adenine (A) and thy mine (T) base pairs. With the aug‐cc‐pVDZ basis set, the predicted binding energies of base pairs are in good agreement with the most elaborate ab initio results.  相似文献   

18.
本文利用色散作用校正的密度泛函理论研究了炭材料上含氮官能团对CO2吸附的作用。通过计算比较了不同含氮官能团炭材料结构片段吸附二氧化碳后的结构参数和能量,由于较强的静电作用和形成弱氢键,含单个苯环的酰胺和吡啶类的吸附剂吸附二氧化碳的作用强于单个苯胺和吡咯类吸附剂。但当增加苯环数时,色散作用主导的吡咯型吸附剂的吸附能力显著增强。以上结果预示着酰胺和吡咯类将是大π体系中具有良好CO2吸附性能的吸附剂。因而,色散作用在CO2吸附过程中也占据着重要地位。计算得到的结果与我们之前的实验结果一致,并且将有利于筛选更有效的二氧化碳吸附剂。  相似文献   

19.
运用基于广义梯度密度泛函理论的BLYP方法研究了水分子在HZSM-5沸石原子簇不同孔道中的吸附前后的结构.结果表明水分子与HZSM-5沸石原子簇相互作用时,电子由水分子向沸石骨架转移.一个水分子吸附于HZSM-5的直孔道、扭曲孔道和交叉孔道Br(o)nsted酸位上时,均形成较稳定的中性络合物的结构,但是在不同沸石孑L道的吸附热不一样,大小顺序分别为交叉孔道>直孔道>扭曲孔道.当有两个水分子被吸附时,不同沸石孔道Br(o)nsted酸位上中性络合物的结构与离子性络合物的结构均有存在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号