首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate that families of vortex solitons are possible in a bidispersive three-dimensional nonlinear Schr?dinger equation. These solutions can be considered as extensions of two-dimensional dark vortex solitons which, along the third dimension, remain localized due to the interplay between dispersion and nonlinearity. Such vortex solitons can be observed in optical media with normal dispersion, normal diffraction, and defocusing nonlinearity.  相似文献   

2.
We predict a novel type of cavity solitons, Bloch cavity solitons, existing in nonlinear resonators with the refractive index modulated in both longitudinal and transverse directions and for both focusing (at normal diffraction) and defocusing (at anomalous diffraction) nonlinearities. We develop a modified mean-field theory and analyze the properties of these novel cavity solitons demonstrating, in particular, their substantial narrowing in the zero-diffraction regime.  相似文献   

3.
The effect of diffraction and dispersion on three wave coupling is investigated. The instability leading to space modulation of packets is obtained. This instability and its nonlinear stage is similar to modulational instability of quasimonochromatic waves. The localized structures (solitons and waveguide) can be a result of the instability. We demonstrate that one-dimensional and two-dimensional such structures are unstable. The existence of stable three-dimensional solitons is shown.  相似文献   

4.
We discuss the nonlinear Schr6dinger equation with variable coefficients in 21) graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on these solutions, we mainly investigate the dynamical behaviors of solitons in three different diffraction decreasing waveguides with the hyperbolic, Gaussian and Logarithmic profiles. Results indicate that for the same parameters, the amplitude of bright solitons in the Logarithmic profile and the amplitude of dark solitons in the Gaussian profile are biggest respectively, and the amplitude in the hyperbolic profile is smallest, while the width of solitons has the opposite case.  相似文献   

5.
In this paper, we present the (1+1)-dimensional inhomogeneous nonlinear Schrödinger (NLS) equation that describes the propagation of optical waves in nonlinear optical systems exhibiting optical lattice, inhomogeneous nonlinearity and varying diffraction at the same time. A series of interesting properties of spatial solitons are found from the numerical calculations, such as the stable propagation in the a nonperiodic optical lattice induced by periodic diffraction variations and periodic nonlinearity variations. Finally, the interaction of neighboring spatial solitons in a nonperiodic optical lattice is discussed, and the results reveal that two spatial solitons can propagate periodically and separately in the optical lattice without interaction.  相似文献   

6.
An averaged variational principle is applied to analyze the nonlinear effect of transverse perturbations (including diffraction) on quasi-one-dimensional soliton propagation governed by various wave equations. It is shown that parameters of the spatiotemporal solitons described by the cubic Schrödinger equation and the Yajima-Oikawa model of interaction between long-and short-wavelength waves satisfy the spatial quintic nonlinear Schrödinger equation for a complex-valued function composed of the amplitude and eikonal of the soliton. Three-dimensional solutions are found for two-component “bullets” having long-and short-wavelength components. Vortex and hole-vortex structures are found for envelope solitons and for two-component solitons in the regime of resonant long/short-wave coupling. Weakly nonlinear behavior of transverse perturbations of one-dimensional soliton solutions in a self-defocusing medium is described by the Kadomtsev-Petviashvili equation. The corresponding rationally localized “lump” solutions can be considered as secondary solitons propagating along the phase fronts of the primary solitons. This conclusion holds for primary solitons described by a broad class of nonlinear wave equations.  相似文献   

7.
We present a detailed study of the dynamics of light in passive nonlinear resonators with shallow and deep intracavity periodic modulation of the refractive index in both longitudinal and transverse directions of the resonator. We investigate solutions localized in the transverse direction (so-called Bloch cavity solitons) by means of envelope equations for underlying linear Bloch modes and solving Maxwell’s equations directly. Using a round-trip model for forward and backward propagating waves we review different types of Bloch cavity solitons supported by both focusing (at normal diffraction) and defocussing (at anomalous diffraction) nonlinearities in a cavity with a weak-contrast modulation of the refractive index. Moreover, we identify Bloch cavity solitons in a Kerr-nonlinear all-photonic crystal resonator solving Maxwell’s equations directly. In order to analyze the properties of Bloch cavity solitons and to obtain analytical access we develop a modified mean-field model and prove its validity. In particular, we demonstrate a substantial narrowing of Bloch cavity solitons near the zero-diffraction regime. Adjusting the quality factor and resonance frequencies of the resonator optimal Bloch cavity solitons in terms of width and pump energy are identified.  相似文献   

8.
We demonstrate that both the linear (diffraction) and the nonlinear dynamics of two-dimensional waveguide arrays are considerably more complex and versatile than their one-dimensional counterparts. The discrete diffraction properties of these arrays can be effectively altered, depending on the propagation Bloch k-vector within the first Brillouin zone of the lattice. In general, this diffraction behavior is anisotropic and therefore permits the existence of a new class of discrete elliptic solitons in the nonlinear regime.  相似文献   

9.
Compression and stretching of ring-vortex solitons, which is a novel self-similar solution of(2+1)-dimensional diffraction decreasing waveguide, is investigated analytically and numerically. We obtain the ring-vortex solitons via the similarity transformation method. The distance modulation for the width, the diffraction, and the nonlinear response, strongly affects the form and the behavior of the self-similar vortex, and facilitates the efficient compression of optical waves. This approximate ring-vortex solitons can reflect the real properties of self-similar optical vortex beams during propagation under certain parameter window selection. Specific examples and figures are given to illustrate discussed features. The results obtained in this paper may have potential values for all-optical data-processing schemes and the design of beam compressors and amplifiers.  相似文献   

10.
Photovoltaic photorefractive binary waveguide arrays are fabricated by proton implantation and selective light illumination on top of an iron-doped near stoichiometric lithium niobate crystal. Linear discrete diffraction and nonlinear formation of gap solitons were investigated by single-channel excitation using Gaussian light beams coupled into either wide or narrow waveguide channels. The results show that, at low power, linear light propagation leads to discrete diffraction, whilst for higher input power the focusing mechanism dominates, finally leading to the formation of gap solitons in the binary waveguide arrays. Our simulation of light propagation based on a nonlinear beam propagation method confirms the experimental findings.  相似文献   

11.
An averaged-Lagrangian method is used to analyze diffraction effects on propagation of solitons of various types in homogeneous media. It is shown that diffraction can counteract the self-focusing of dark and gray envelope solitons described by the nonlinear Schrödinger equation and solitons described by the Korteweg-de Vries equation when the soliton intensities do not exceed certain values. Conversely, diffraction enhances the self-focusing of dark and gray envelope solitons described by the modified Korteweg-de Vries equation, kinks described by the sine-Gordon equation, and domain walls in the u 4 model, which is explained by mutual correlation between transverse and longitudinal soliton dynamics. Critical parameters that determine soliton stability with respect to self-focusing are found for several models.  相似文献   

12.
薛春华  周骏  祁义红 《物理学报》2007,56(1):240-244
从理论上研究了Laue孤子传播的动力学行为,并通过数值模拟验证了这些行为.结果表明,由于非线性衍射,入射脉冲会分裂产生四种模式,其中产生的Laue孤子的传播行为与一般共振介质中孤子的传播行为相似.  相似文献   

13.
We report the first experimental demonstration of ring-shaped photonic lattices by optical induction and the formation of discrete solitons in such radially symmetric lattices. The transition from discrete diffraction to single-channel guidance or nonlinear self-trapping of a probe beam is achieved by fine-tuning the lattice potential or the focusing nonlinearity. In addition to solitons trapped in the lattice center and in different lattice rings, we demonstrate controlled soliton rotation in the Bessel-like ring lattices.  相似文献   

14.
We show that two regimes of diffraction exist in arrays of waveguides, depending upon the input conditions. At higher powers, normal diffraction leads to self-focusing and to the formation of bright solitons through the nonlinear Kerr effect. By slightly changing the input conditions, light experiences anomalous diffraction and is nonlinearly defocused. For the first time, self-focusing and self-defocusing have been achieved for the same medium, structure, and wavelength.  相似文献   

15.
We present exact analytical results for bright and dark solitons in a type of one-dimensional spatially inhomogeneous nonlinearity. We show that the competition between a homogeneous self-defocusing (SDF) nonlinearity and a localized self-focusing (SF) nonlinearity supports stable fundamental bright solitons. For a specific choice of the nonlinear parameters, exact analytical solutions for fundamental bright solitons have been obtained. By applying both variational approximation and Vakhitov-Kolokolov stability criterion, it is found that exact fundamental bright solitons are stable. Our analytical results are also confirmed numerically. Additionally, we show that a homogeneous SF nonlinearity modulated by a localized SF nonlinearity allows the existence of exact dark solitons, for certain special cases of nonlinear parameters. By making use of linear stability analysis and direct numerical simulation, it is found that these exact dark solitons are linearly unstable.  相似文献   

16.
The propagation of magnetoacoustic solitary waves is investigated in magnetized quantum plasma consisting of cold ions and hot electrons. By using the quantum magnetohydrodynamic (QMHD) model, the nonlinear characteristics of different features of solitary waves in an electron-ion quantum magnetoplasma are investigated. Magnetoacoustic solitary waves are stationary solutions of the equations composed of the nonlinear mass and momentum continuity, together with the Maxwell's equations. The important quantum-mechanical effects including the quantum statistical and diffraction are examined numerically on the profiles of the solitons. It is found that the non-dimensional characteristic of the quantum parameter plays a significant role in the formation of the solitons.  相似文献   

17.
We investigate both experimentally and theoretically the interaction between a light beam and a photonic lattice optically induced with partially coherent light. We demonstrate a clear transition from two-dimensional discrete diffraction to discrete solitons in such a partially coherent lattice and show that the nonlinear interaction process is associated with a host of new phenomena including lattice dislocation, lattice deformation, and creation of structures akin to optical polarons.  相似文献   

18.
We show both theoretically and experimentally in an optical fiber system that a noninstantaneous nonlinear environment supports the existence of spectral incoherent solitons. Contrary to conventional solitons, spectral incoherent solitons do not exhibit a confinement in the spatiotemporal domain, but exclusively in the frequency domain. The theory reveals that the causality condition inherent to the nonlinear response function is the key property underlying the existence of spectral incoherent solitons. These solitons constitute nonequilibrium stable states of the incoherent field and are shown to be robust with respect to binary collisions.  相似文献   

19.
We demonstrate the first fully controlled generation of immobile and slow spatial gap solitons in nonlinear periodic systems with band-gap spectra, and observe the key features of gap solitons that distinguish them from discrete solitons, including a dynamical transformation of gap solitons due to nonlinear interband coupling. We also describe theoretically and confirm experimentally the effect of the anomalous steering of gap solitons in optically induced photonic lattices.  相似文献   

20.
刘晓蓓  李彪 《中国物理 B》2011,20(11):114219-114219
We present three families of soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with distributed coefficients. We investigate the dynamics of these solitons in nonlinear optics with some selected parameters. Different shapes of bright solitons, a train of bright solitons and dark solitons are observed. The obtained results may raise the possibilities of relevant experiments and potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号