首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This feasibility study deals with the separations of proteins by an on-line combination of zone electrophoresis (ZE) with isotachophoresis (ITP) on a poly(methylmethacrylate) column-coupling (CC) chip with integrated conductivity detection. ITP and ZE provided specific analytical functions while performing the cationic mode of the separation. ITP served, mainly, for concentrations of proteins and its concentrating power was beneficial in reaching a low dispersion transfer (injection) of the proteinous constituents, loaded on the CC chip in a 960 nL volume, into the ZE separation stage. This was complemented by an electrophoretically driven removal of the sample constituents migrating in front of the focused proteins from the separation system before the ZE separation. On the other hand, ZE served as a final separation (destacking) method and it was used under the separating conditions providing the resolutions and sensitive conductivity detections of the test proteins. In this way, ITP and ZE cooperatively contributed to low- or sub-microg/mL concentration detectabilities of proteins and their quantitations at 1-5 microg/mL concentrations. However, a full benefit in concentration detectabilities of proteins, expected from the use of the ITP-ZE combination, was not reached in this work. Small adsorption losses of proteins and detection disturbances in the ZE stage of separation, very likely due to trace constituents concentrated by ITP, appear to set limits in the detection of proteins in our experiments. The ITP-ZE separations were carried out in a hydrodynamically closed separation compartment of the chip with suppressed hydrodynamic and electroosmotic flows of the electrolyte solutions. Such transport conditions, minimizing fluctuations of the migration velocities of the separated constituents, undoubtedly contributed to highly reproducible migrations of the separated proteins (fluctuations of the migration time of a particular protein were typically 0.5% RSD in repeated ITP-ZE runs).  相似文献   

2.
Capillary electrophoresis (CE) was employed for the determination of cytochrome c using a wall-jet amperometric detector consisting a copper(I) oxide-modified sol–gel carbon composite electrode (CCE), which exhibits a sensitive electrocatalytic response for the oxidation of cytochrome c. The optimum conditions of separation and detection are 0.08 M NaOH for the separation solution, 12 kV for separation voltage and +0.60 V versus saturated calomel electrode (SCE) for the detection potential. Calibration was linear over the concentration range 1–600 μM with the limit of detection of 3.4 μM, based on a signal-to-noise ratio (S/N) of 3.  相似文献   

3.
This work deals with the determination of free sulfite in wine by zone electrophoresis (ZE) with on-line isotachophoresis (ITP) sample pretreatment on a column-coupling (CC) chip with conductivity detection. A rapid pre-column conversion of sulfite to hydroxymethanesulfonate (HMS), to minimize oxidation losses of the analyte, was included into the developed analytical procedure, while ITP and ZE were responsible for specific analytical tasks in the separations performed on the CC chip. ITP, for example, eliminated the sample matrix from the separation compartment and, at the same time, provided a selective concentration of HMS before its transfer to the ZE stage of the separation. On the other hand, ZE served as a final separation (destacking) method and it was used under the separating conditions favoring a sensitive conductivity detection of HMS. In this way, ITP and ZE cooperatively contributed to a 900 microg/l concentration detectability for sulfite as attained for a 60 nl load of wine (a 15-fold wine dilution and the use of a 0.9 microl sample injection channel of the chip) and, consequently, to the determination of free sulfite when this was present in wine at the concentrations as low as 3 mg/l. The separations were carried out in a closed separation compartment of the chip with suppressed hydrodynamic and electroosmotic flows. Such transport conditions, minimizing fluctuations of the migration velocities of the separated constituents, made a frame for precise migration and quantitation data as achieved for HMS in both the model and wine samples. Ninety percent recoveries, as typically obtained for free sulfite in wine samples, indicate promising potentialities of the present method as far as the accuracies of the provided analytical results are concerned.  相似文献   

4.
The use of a poly(methylmethacrylate) capillary electrophoresis chip, provided with a high sample load capacity separation system (a 8500 nL separation channel coupled to a 500 nL sample injection channel) and a pair of on-chip conductivity detectors, for zone electrophoresis (ZE) determination of oxalate in urine was studied. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the separations performed on the chip. A low pH of the carrier electrolyte (4.0) provided an adequate selectivity in the separation of oxalate from anionic urine constituents and, at the same time, also a sufficient sensitivity in its conductivity detection. Under our working conditions, this anion could be detected at a 8 x 10(-8) mol/L concentration also in samples containing chloride (a major anionic constituent of urine) at 3.5 x 10(-3) mol/L concentrations. Such a favorable analyte/matrix concentration ratio (in part, attributable to a transient isotachophoresis stacking in the initial phase of the separation) made possible accurate and reproducible (typically, 2-5% relative standard deviation (RSD) values of the peak areas of the analyte in dependence on its concentration in the sample) determination of oxalate in 500 nL volumes of 20-100-fold diluted urine samples. Short analysis times (about 280 s), no sample pretreatment (not considering urine dilution) and reproducible migration times of this analyte (0.5-1.0% RSD values) were characteristic for ZE on the chip. This work indicates general potentialities of the present chip design in rapid ZE analysis of samples containing the analyte(s) at high ionic matrix/analyte concentration ratios.  相似文献   

5.
Conditions for converting a set of five standard proteins to electrochemically active sodium dodecylsulfate (SDS) complexes were worked out with the aim of using such complexes for conductivity detection with a a chip electrophoresis system. The results obtained were compared with standard capillary electrophoresis (37 cm (effective length 30 cm)×75 μm I.D. capillary, 10 kV, negative polarity at the inlet). The chip separations were run at 500 V per chip (100 V/cm) as compared to the standard capillary arrangement, which was run at 266.6 V/cm. For the capillary set-up the protein complexes were prepared in aqueous solution (Milli-Q water) made 10 mM with respect to SDS. If the SDS concentration was increased to 50 mM, the separation in the capillary was incomplete. On the other hand with the chip system both approaches yielded acceptable results. The chip separations were slightly (but not distinctly) shorter and offered better separations than the standard set-up. The concentration of the surfactant used for the preparation the complexes results in alternations of the elution sequence, which is preserved if the chip separation is used instead of the capillary set-up. Apparently the full capacity of protein–SDS binding is not exploited for the preparation of the adducts.  相似文献   

6.
The use of a poly(methylmethacrylate) capillary electrophoresis chip, provided with a high sample load capacity separation system (a 8500 nL separation channel combined with a 500 nL sample injection channel) and a pair of on‐chip conductivity detectors, for zone electrophoresis (ZE) determination of oxalate in beer was studied. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the separations performed on the chip. A low pH of the carrier electrolyte (3.8), implemented by aspartic acid and bis‐tris propane, provided an adequate selectivity in the separation of oxalate from anionic beer constituents and, at the same time, also a sufficient sensitivity in its conductivity detection. Under our working conditions, this anion could be detected at a 0.5 μmol/L concentration also in samples containing chloride (a major anionic constituent of beer) at a 1800 higher concentration. Such a favorable analyte/matrix concentration ratio made possible accurate and reproducible [typically, 2–5% relative standard deviation (RSD) values of the peak areas of the analyte in dependence on its concentration in the sample] determination of oxalate in 500 nL volumes of 20–50‐fold diluted beer samples. Short analysis times (about 200 s), minimum sample preparation, and reproducible migration times of this analyte (0.5–1.0% RSD values) were characteristic for ZE on the chip.  相似文献   

7.
A new type of hydrophilic derivatized capillary has been used to enable the on-line capillary electrophoresis separation and electrospray mass spectrometric detection of a mixture of proteins containing bovine cytochrome c, tuna cytochrome c and horse heart myoglobin. Less than 40 fmol of each compound were loaded into the capillary. Baseline resolution of components was achieved, as were accurate assignments of molecular masses. The hydrophilic derivatized capillaries were taken through extensive testing procedures to characterize their performance and capabilities for protein analysis. A mixture of six proteins (cytochrome c, ribonuclease A, -chymotrypsinogen, myoglobin, carbonic anhydrase II and -lactalbumin) in acetic acid—sodium acetate buffer was used to delineate the relationships between migration time and pH, along with migration time and buffer concentration for each protein. The variations in capillary efficiency as a function of pH and as a function of buffer concentration were also characterized for the same six proteins in the acetic acid–sodium acetate system. A pH of 4.8 was found to offer an excellent compromise between separation efficiency (up to 500 000 theoretical plates) and analysis time. Capillary efficiencies were also found to be very good when employing a Tris · HCl electrolyte adjusted to pH 4.8. Lastly, electropherogram reproducibility and capillary durability were examined with the finding that little deterioration of the capillary occurred over the course of 400 injections (200 h run time). This represents a notable improvement over previously documented derivatization procedures designed to reduce protein adsorption to fused-silica capillary walls  相似文献   

8.
γ-Hydroxybutyric acid (GHB), a minor metabolite or precursor of γ-aminobutyric acid (GABA), acts as a neurotransmitter/neuromodulator via binding to GABA receptors and to specific presynaptic GHB receptors. Based upon the stimulatory effects, GHB is widely abused. Thus, there is great interest in monitoring GHB in body fluids and tissues. We have developed an assay for urinary GHB that is based upon liquid–liquid extraction and capillary zone electrophoresis (CZE) with indirect UV absorption detection. The background electrolyte is composed of 4 mM nicotinic acid (compound for indirect detection), 3 mM spermine (reversal of electroosmosis) and histidine (added to reach a pH of 6.2). Having a 50 μm I.D. capillary of 40 cm effective length, 1-octanesulfonic acid as internal standard, solute detection at 214 nm and a diluted urine with a conductivity of 2.4 mS/cm, GHB concentrations ≥2 μg/ml can be detected. Limit of detection (LOD) and limit of quantitation (LOQ) were determined to be dependent on urine concentration and varied between 2–24 and 5–60 μg/ml, respectively. Data obtained suggest that LOD and LOQ (both in μg/ml) can be estimated with the relationships 0.83 κ and 2.1 κ, respectively, where κ is the conductivity of the urine in mS/cm. The assay was successfully applied to urines collected after administration of 25 mg sodium GHB/kg body mass. Negative electrospray ionization ion-trap tandem mass spectrometry was used to confirm the presence of GHB in the urinary extract via selected reaction monitoring of the m/z 103.1→m/z 85.1 precursor–product ion transition. Independent of urine concentration, this approach meets the urinary cut-off level of 10 μg/ml that is required for recognition of the presence of exogenous GHB. Furthermore, data obtained with injection of plain or diluted urine indicate that CZE could be used to rapidly recognize GHB amounts (in μg/ml) that are ≥ 4 κ.  相似文献   

9.
Perfluorinated carboxylic acids (PFCAs), amphiphiles of anthropogenic origin, are spread worldwide throughout the environment. This work deals with their zone electrophoresis (ZE) separation on a chip with coupled columns and integrated conductivity detection. Analogies with the electrophoretic behavior of PFCAs and fatty acids were employed in a search for electrolyte conditions suitable for their separation. ZE separations in the water-ethanol electrolyte systems, based on differences in the ionic mobilities of the anions of PFCAs, provided favorable resolution and detection conditions of the homologues containing up to 10 carbon atoms in the alkyl chain. Concentration limits of detection of 0.3-6.5 micromol/L were attained for PFCAs (loaded by a 900 nL volume sample injection channel of the chip) under these separation conditions. The material of which the chip was made [poly(methylmethacrylate)] restricted its use in investigations of the separations of higher PFCA homologues as it was damaged by ethanolic and/or methanolic background electrolyte solutions required in experiments with these amphiphilic compounds.  相似文献   

10.
Molecular pattern formation using chemically modified cytochrome c and green fluorescent protein (GFP) was presented for the application as a bioelectronic device. A protein conjugate was synthesized by the formation of disulfide bridges. In order to make molecular assembly onto the gold-coated substrate, cytochrome c was cross-linked with N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP). After the modification of cytochrome c, it was spontaneously deposited, so that it could be adsorbed onto the gold-coated substrate by self-assembly (SA) technique. Using the cellulose membrane, cytochrome c molecules were deposited onto the gold-coated substrate with the spatial resolution of ca. 0.2 μm. In order to verify the modified cytochrome c, UV absorption spectrum was measured. GFP was adsorbed onto the cytochrome c monolayer by electrostatic force. Fluorescence emission spectrum was investigated to verify the existence of the GFP molecule onto the cytochrome c monolayer. To verify the adsorption of cytochrome c molecules onto the gold-coated substrate and GFP molecules onto the cytochrome c monolayer, the atomic force microscopy and lateral force microscopy investigations were performed. Molecular pattern formation of cytochrome c and GFP molecules were successfully performed by chemical means and electrostatic force.  相似文献   

11.
A microfabricated thin glass chip for contactless conductivity detection in chip capillary electrophoresis is presented in this contribution. Injection and separation channels were photolithographed and chemically etched on the surface of substrate glass, which was bonded with a thin cover glass (100 μm) to construct a new microchip. The chip was placed over an independent contactless electrode plate. Owing to the thinness between channel and electrodes, comparatively low excitation voltage (20–110 V in Vp–p) and frequency (40–65 kHz) were suitable, and favorable signal could be obtained. This microchip capillary electrophoresis device was used in separation and detection of inorganic ions, amino acids and alkaloids in amoorcorn tree bark and golden thread in different buffer solutions. The detection limit of potassium ion was down to 10 μmol/L. The advantages of this microchip system exist in the relative independence between the microchip and the detection electrodes. It is convenient to the replacement of chip and other operations. Detection in different position of the channel would also be available.  相似文献   

12.
This feasibility study deals with column switching in zone electrophoresis (ZE) separations on a column coupling (CC) chip. The column switching implemented into the ZE separations an on-chip sample clean up applicable for both the multicomponent and high salinity samples. In addition, complemented by different separation mechanisms in the coupled columns (channels), it provided benefits of two-dimensional separations. Properly timed column switching gave column-to-column transfers of the analytes, characterized by 99-102% recoveries, delivered to the second separation stage on the chip the analyte containing fractions contaminated only with minimum amounts of the matrix constituents. A diffusion driven transport of the matrix constituents to the second channel of the chip (due to direct contacts of the electrolyte solutions in the bifurcation region), representing 0.1-0.2% of the loaded sample constituents, was found to accompany the sample clean up performed on the CC chip. This source of potential disturbances to the separation in the second channel, however, is not detectable in a majority of practical situations. With respect to a 900 nl volume of the sample channel on the CC chip, the electric field and isotachophoresis (ITP) stackings were employed to minimize the injection dispersion in the separations and concentrate the analytes. Here, the column switching, removing a major part of the stacker from the separation system, provided a tool effective in a control of the destacking of analytes. Highly reproducible ZE separations as attained in this work also for the chip-to-chip and equipment-to-equipment frames can be ascribed, at least in part, to suppressions of electroosmotic and hydrodynamic flows of the solutions in which the separations were performed.  相似文献   

13.
Guan CL  Ouyang J  Li QL  Liu BH  Baeyens WR 《Talanta》2000,50(6):1197-1203
A simple method for simultaneous determination of three catecholamines using ion chromatography (IC) with direct conductivity detection (CD) based on the ionization of catecholamines in acidic medium without chemical suppression is developed in the present paper. The method could be used for the determination of these catecholamines in pharmaceutical preparations for the purpose of drug quality control. The recovery of catecholamines was more than 97% (n=3) and the relative standard deviation (R.S.D.) (n=11) was less than 2.1%. In a single chromatographic run, norepinephrine (NE), epinephrine (E) and dopamine (DA) can be determined in less than 10 min. The detection limits were found to be 0.001 μg/ml for NE, 0.01 μg/ml for E and DA respectively. Linear ranges were 0.01–50 μg/ml for NE (r2=0.9998), 0.1–50 μg/ml for E (r2=0.9995) and DA (r2=0.9999), respectively.  相似文献   

14.
Sample pre-concentration by isotachophoresis in microfluidic devices   总被引:1,自引:0,他引:1  
We have designed microfluidic devices with the aim of coupling isotachophoresis (ITP) with zone electrophoresis (ZE) as a method to increase the concentration limit of detection in microfluidic devices. We used plastic multi-channel chips, designed with long sample injection channel segments, to increase the sample loading. The chip was designed to allow stacking of the sample into a narrow band by discontinuous ITP buffers and subsequent separation in the ZE mode. In the ITP-ZE mode, with a 2-cm long sample injection plug, sensitivity was increased by 400-fold over chip ZE and we found that the separation performance after the ITP stacking was comparable to that of regular chip ZE. We report sub-picomolar limits of detection of fluorescently labeled ACLARA eTag reporter molecules electrokinetically injected from cell lysate sample matrixes containing moderate salt concentrations. We evaluated sample injections from buffers with varied ionic strengths and found that efficient stacking and separations were obtained in both low and high conductivity buffers, including physiological buffer with at least 140 mM salt. We applied ITP-ZE to the analysis of a cell surface protease (ADAM 17) which used live intact cells in physiological buffers with detection limits below 10 cells/assay.  相似文献   

15.
A rapid and low-cost means of developing a working prototype for a positive-displacement driven open tubular liquid chromatography (OTLC) analyzer is demonstrated. A novel flow programming and injection strategy was developed and implemented using soft lithography, and evaluated in terms of chromatographic band broadening and efficiency. A separation of two food dyes served as the model sample system. Sample and mobile phase flowed continuously by positive displacement through the OTLC analyzer. Rectangular channels, of dimensions 10 μm deep by 100 μm wide, were micro-fabricated in poly-dimethylsiloxane (PDMS), with the separation portion 6.6 cm long. Using a novel flow programming method, in contrast to electroosmotic flow, sample injection volumes from 0.5 to 10 nl were made in real-time. Band broadening increased substantially for injection volumes over 1 nl. Although underivatized PDMS proved to be a sub-optimal stationary phase, plate heights, H, of 12 μm were experimentally achieved for an unretained analyte with the rectangular channel resulting in a reduced plate height, h, of 1.2. Chromatographic efficiency of the unretained analyte followed the model of an OTLC system limited by mass-transfer in the mobile phase. Flow rates from 6 nl min−1 up to 200 nl min−1 were tested, and van Deemter plots confirmed plate heights were optimum at 6 nl min−1 over the tested flow rate range. Thus, the best separation efficiency, N of 5500 for the 6.6 cm length separation channel, was achieved at the minimum flow rate through the column of 6 nl min−1, or 3 ml year−1. This analyzer is a low-cost sampling and chemical analysis tool that is intended to complement micro-fabricated electrophoretic and related separation devices.  相似文献   

16.
Simultaneous determination of purine bases, ribonucleosides and ribonucleotides was achieved by coupling capillary electrophoresis (CE) with wall-jet amperometric detection. A 200 μm diameter copper disk electrode was applied at working potential, +0.65 V vs. saturated calomel electrode. The current response of high sensitivity and stability was obtained in strong basic solutions which were suitable for satisfactory CE separations. The calibration curve was linear over 2–3 orders of magnitude and the limits of detection for adenine, guanine, xanthine, uric acid, adenosine, guanosine, adenosine-5′-monophosphate and guanosine-5′-monophosphate were below 9 fmol (S/N=3). The use of this method for the separation and detection of compounds present in human plasma samples was reported.  相似文献   

17.
A nonaqueous electrochromatographic reversed-phase separation method for retinyl esters using continuous bed columns has been developed. The packing material 7 μm Nucleosil 4000 Å C18 was sol–gel bonded in 180 μm I.D. capillaries. The mobile phase used was 2.5 mM lithium acetate in N,N-dimethylformamide–acetonitrile–methanol (2+7+1, v/v). At 350 V/cm and 30°C, this mobile phase composition gave rise to an electroosmotic flow of 1 mm/s. No Joule heating nor bubble formation were observed even at 625 V/cm (17 μA). With a 36 cm Leff column complete separation of the commercially available and synthesized standards (all-trans-retinyl acetate, palmitate, heptadecanoate, stearate, oleoate, and linoleoate) was obtained within 10 min. The within-day and between-day variations of retention times of all-trans-retinyl palmitate were <0.3% relative standard deviation (RSD) (n=3) and <2% RSD (n=6), respectively. The within-day and between-day variations of peak areas were both <2% (both n=3). The columns were used for more than 1 month without degradation. Liver extracts from arctic seal were analyzed.  相似文献   

18.
Sample preparation procedures using octadecyl (C18) extraction disks were developed to obtain accurate and reproducible results for determinations of clenbuterol (20 μg per dose) and levothyroxine (100 μg per dose) in dissolution media of solid oral dosage forms. Preconcentration of samples allowed final concentrations of 1.1 μg/ml of clenbuterol and 4.0 μg/ml of levothyroxine to be reached prior to CE analysis. The results obtained by CE were in good agreement with those of HPLC. The precision of the migration time, peak area, peak height and accuracy were determined in both intea-day (n = 6) and inter-day (n =18) assays. Linearity was demonstrated over the ranges 0.5–80.0 μg/ml of clenbuterol and 1.0–30.0 μg/ml of levothyroxine. The mean recoveries were higher than 94.0%, ranging from 50 to 125% levels with respect to dose potencies. The proposed methodology may be generally applied to determine drugs at ng/ml concentrations.  相似文献   

19.
We have developed a method for the determination of histamine (His), tyramine (Tyr) and cadaverine (Cad) using high-performance capillary electrophoresis with fluorescence detection and an on-line mode in-capillary derivatization with o-phthalaldehyde (OPA)/N-acetylcysteine (NAC) as derivatization reagent. HPCE separation of His, Tyr, Cad and Spermidine (Spd) was influenced by sodium dodecyl sulfate (SDS) and phosphate–borate buffer (pH 10) concentration. After optimization of the method, a 4-component amine solution containing His, Tyr, Cad and Spd could be separated and detected by using 2 mM OPA/NAC–20 mM SDS–20 mM phosphate–borate buffer (pH 10) as a run buffer at an applied voltage of 25 kV, with detection at 340 nm. Although a practical sensitivity level can be obtained by using fluorescence detection (λex=340 nm, λem=450 nm) instead of ultraviolet–visible detection, Spd was not detected at all. The precision (relative standard deviation; n=15) of this method for within- and between-days is less than 2.9% (peak area) and 1.3% (migration time), respectively. Linearity for these analytes, except for Spd, was established over a concentration range of 0.02 to 1.00 μmol/ml and detection limits (S/N=3) range from 1 nmol/ml for His and Tyr to 5 nmol/ml for Cad. The determination of His and some amines in aging raw fish meat samples (room temperature, 48 h) was carried out using the described method with fluorescence detection.  相似文献   

20.
An appropriate combination of separation mechanisms (simultaneous use of differences in pK values, host-guest complexations, and the ionic strength dependences of the actual ionic mobilities) provided zone electrophoresis (ZE) resolution of 22 organic and inorganic acids expected in wines on a polymethylmethacrylate (PMMA) chip with integrated conductivity detection. These separating conditions offered a framework for the ZE determination of organic acids responsible for some important organoleptic characteristics of wines (tartrate, malate, succinate, acetate, citrate, and lactate). The ZE procedure developed in this context is simple and rapid (ca. 10 minutes' analysis time), while affording reproducible migration and quantitation data for the acids. For example, 0.8-2.0% RSD values characterized the migration times of the acids for 25 repeated ZE runs with the same sample carried out in 5 days in the background electrolyte solution prepared freshly on a daily basis, while 3-5% RSD values were typical for the accompanying peak area data. The concentration ranges within which the acids of analytical interest could be determined in one ZE run covered all wine samples included in our study (100-400-fold sample dilutions were needed to work under the conditions corresponding to the validities of the calibration data). 90-110% recoveries of the acids as obtained repeatedly for one of the reference wine samples used in our experiments indicate a good predisposition of the present method to provide accurate analytical results. This statement also supports the results from the determination of the acids in reference wine samples with claimed concentrations of malic (five samples), tartaric (one sample), and lactic (one sample) acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号