首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
1-Methylallyl, 1,1-dimethylallyl, 1,2-dimethylallyl, 1,3-dimethylallyl, 1,1,2-trimethylallyl, and 1-ethylallyl radicals have been generated in the gas phase at 20 ± 1°C by addition of H atoms, formed by Hg(63P1) photosensitization of H2, to appropriate dienes. Their combination reactions with ethyl radicals have been studied and the relative reactivities of the reaction centers in each allylic radical determined. Similar measurements have been made for some combination reactions of n-propyl, i-propyl, and t-butyl with 1-methylallyl and 1,1,2-trimethylallyl radicals. The more substituted reaction centers are found to be the less reactive. In addition the self-combination and disproportionation of 1-methylallyl radicals has been investigated, as has cross disproportionation of each allylic radical with ethyl. The results establish a general pattern of reactivity for these radicals, which is interpreted primarily in terms of the effects of steric interaction during reaction.  相似文献   

2.
Using specifically labelled compounds we have made a detailed study of the source of the hydrogen transferred in the elimination of C3H6 from the molecular ion of phenyln-propyl ether following electron impact ionization and from the protonated (and ethylated) molecule following chemical ionization. The migrating hydrogen originates from all three positions of the npropyl group but not in the ratio expected for randomization of the alkyl hydrogens prior to transfer. The source of the migrating hydrogen is similar for both electron impact ionization and chemical ionization, indicating that the factors governing the rearrangement are the same for both modes of ionization. From a comparison of the results for labelled 2,6-dimethyl phenyl n-propyl ethers with the results for the unsubstituted ether it is concluded that hydrogen transfer occurs only to the ether oxygen and not to the phenyl ring. A two-step mechanism involving a set of competing reversible hydrogen transfer reactions followed by C? O bond cleavage is proposed to explain the results.  相似文献   

3.
Three of the main oxygen-containing fragments resulting from 3-methyl-2-butyl trifluoroacetate (11) had been identified previously as the 1-triflnoroacetoxyethyl cation (m/z 141, 12, product of simple cleavage), and the products of single (m/z 142) and double hydrogen transfer (m/z 143, protonated ethyl trifluoroacetate). Collisionally activated dissociation of m/z 142 and the isotopomers resulting from 11-2-d, 11-1-d3, 11-5,6-d6, and 11-18O2 has established that m/z 142 is the oxygen protonated 1-trifluoroacetoxyethyl free radical (17) formed by hydrogen shift irom a γ-methyl group to oxygen in the molecular ion, rather than in a complex (18) between 12 and the 2-propyl free radical, as expected based on a mechanistic model existing in the literature. The second hydrogen transferred originates in the other γ-methyl group; its migration may occur, but does not have to, in the complex between 17 and a molecule of propene, prior to dissociation of the two fragments. Collision-activated dissociation has now shown that the m/z 140 ion observed in the spectrum is the molecular ion of vinyl trifluoroacetate, possibly formed by a hydrogen transfer from 12 to the 2-propyl radical in the complex 18. The hydrogen migration to oxygen exhibits no isotope effect, whereas the transfers to carbon atoms exhibit small primary and α secondary kinetic isotope effects. Exclusive migration of the tertiary hydrogen from C(3) occurs in the formation of 2-methylbutene cation radical (m/z 70) from the molecular ion. The hydrocarbon ion fragments and the heteroatom-containing fragments are formed from 11 by disjoint pathways.  相似文献   

4.
Quantitative analyses of the products of thermal degradation of poly(ethyl acrylate), poly(n-propyl acrylate), poly(n-butyl acrylate) and poly(2-ethylhexyl acrylate) have been made, principally by the combined application of GLC and mass and infrared spectroscopy. Data are recorded in mass balance tables. The major gaseous products are carbon dioxide and the olefin corresponding to the ester group. The minor gaseous products include the corresponding alkane, the alkane/olefin ratio being of the order of 10?2–10?3, and traces of carbon monoxide and hydrogen. The alcohol corresponding to the alkyl group is the major liquid product but there are also traces of monomer and the corresponding methacrylate. Alcohol production exhibits autocatalytic properties. The chain fragment fractions of the products are colored yellow and have average chain lengths of 3.2, 3.3, 3.6, and 5.6 for the ethyl, n-propyl, n-butyl and 2-ethylhexyl esters, respectively. The infrared spectra are similar to those of the parent polymers but with well defined differences. Insolubility develops in the ethyl, n-propyl, and n-butyl esters, but the residual material from poly(2-ethylhexyl acrylate) remains soluble even at very advanced stages of degradation. All of these products and reaction characteristics are accounted for in terms of radical reactions with a unique initiation step.  相似文献   

5.
The reaction products of photolysis of acetic anhydride in gas phase at 25°C, where He or CO2 was present as buffer gas, were analyzed by gas chromatography. The extent of photodissociation was 52% ± 5% and the extent of intramolecular hydrogen transfer reaction producing acetic acid and ketene was 48% ± 5%. The rate constants of the hydrogen exchange and radical combination reactions between methyl and acetyl radicals were calculated from the amounts of products. The value of the ratio of the rate constants of hydrogen exchange and radical combination reactions between methyl and acetyl radicals, ??7/??6 = 0.15, indicates that acetyl radical is a relatively poor hydrogen donor. The corresponding ratio of rate constants for the reactions between two acetyl radicals, ??9/??s = 0.42, indicates that acetyl radical is a better hydrogen acceptor than methyl radical.  相似文献   

6.
In order to determine the effect of temperature on the chain-transfer reaction in the free-radical polymerization of ethylene, chain-transfer constants were measured for sixteen transfer agents at 130°C and 200°C at 1360 atm. The results were interpreted as ΔE*, the activation energy of the chain-transfer constant. This value is equal to the difference in activation energy between the transfer step (hydrogen abstraction) and the propagation step (addition to the monomer double bond): ΔE* = Es* ? Ep*. Excellent agreement was found between measured ΔE* values determined at 1360 atm pressure and (Es* ? Ep*) data for ethyl radical determined in vacuum gas-phase reactions. Apparently, the ethyl radical is a good model for polyethyl radical. The chain-transfer constant of ethylbenzene was found to be insensitive to temperature changes, indicating that Ep* = Es* for this compound.  相似文献   

7.
Photocatalytic generation of nitrenes and radicals can be used to tune or even control their reactivity. Photocatalytic activation of sulfonyl azides leads to the elimination of N2 and the resulting reactive species initiate C−H activations and amide formation reactions. Here, we present reactive radicals that are generated from sulfonyl azides: sulfonyl nitrene radical anion, sulfonyl nitrene and sulfonyl amidyl radical, and test their gas phase reactivity in C−H activation reactions. The sulfonyl nitrene radical anion is the least reactive and its reactivity is governed by the proton coupled electron transfer mechanism. In contrast, sulfonyl nitrene and sulfonyl amidyl radicals react via hydrogen atom transfer pathways. These reactivities and detailed characterization of the radicals with vibrational spectroscopy and with DFT calculations provide information necessary for taking control over the reactivity of these intermediates.  相似文献   

8.
B12-dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12-dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C−H bonds.  相似文献   

9.
Intramolecular hydrogen atom transfer is an established approach for the site‐specific functionalization of unactivated, aliphatic C?H bonds. Transformations using this strategy typically require unstable intermediates formed using strong oxidants and have mainly targeted C?H halogenations or intramolecular aminations. Herein, we report a site‐specific C?H functionalization that significantly increases the synthetic scope and convergency of reactions proceeding via intramolecular hydrogen atom transfer. Stable, isolable N‐dithiocarbamates are used as precursors to amidyl radicals formed via either light or radical initiation to efficiently deliver highly versatile alkyl dithiocarbamates across a wide range of complex structures.  相似文献   

10.
Intramolecular hydrogen atom transfer is an established approach for the site‐specific functionalization of unactivated, aliphatic C−H bonds. Transformations using this strategy typically require unstable intermediates formed using strong oxidants and have mainly targeted C−H halogenations or intramolecular aminations. Herein, we report a site‐specific C−H functionalization that significantly increases the synthetic scope and convergency of reactions proceeding via intramolecular hydrogen atom transfer. Stable, isolable N‐dithiocarbamates are used as precursors to amidyl radicals formed via either light or radical initiation to efficiently deliver highly versatile alkyl dithiocarbamates across a wide range of complex structures.  相似文献   

11.
The polar transition states involved in the hydrogen transfer reactions of N-benzylideneanilines, toluenes, benzaldehydes, and anisoles by t-butoxyl radical in benzene at 130°C have been comparatively discussed in terms of the values of the ρ and the kao/kd.  相似文献   

12.
The metalloradical activation of o-aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)-carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium-sized ring structures. Herein we make use of the intrinsic radical-type reactivity of cobalt(III)-carbene radical intermediates in the [CoII(TPP)]-catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8-membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8-membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis-allylic/benzallylic C−H bond to the carbene radical, followed by two divergent processes for ring-closure to the two different types of 8-membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o-quinodimethanes (o-QDMs) which undergo a non-catalyzed 8π-cyclization, DFT calculations suggest that ring-closure to the monobenzocyclooctadienes involves a radical-rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring-closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt-porphyrin catalyst.  相似文献   

13.
The sources of the migrating hydrogen in the elimination of propylene from the protonated and ethylated n-propyl acetate and n-propyl benzoate molecules have been determined by studying the CH4 and H2 chemical ionization mass spectra of esters specifically deuterated in the propyl group. It is shown that the migrating hydrogen originates from C-1 ( ~ 27%), C-2 ( ~ 23%) and C-3 ( ~ 50%) of the propyl group, independent of ester and mode of ionization. It is argued that the observed reaction involves specific competing H-migration reactions from each propyl position to the ether oxygen in a keto-protonated (ethylated) ester molecule.  相似文献   

14.
The functionalization of C(sp3)?H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C?H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition‐metal‐catalyzed C?H activation, 1,n‐hydrogen atom transfer, and transition‐metal‐catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3)?H bonds. For each strategy, the scope, the reactivity of different C?H bonds, the position of the reacting C?H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C?H functionalization reactions and inspire future research in this area.  相似文献   

15.
This work demonstrates how photoredox‐mediated C(sp3)?H activation through radical translocation can be combined with asymmetric catalysis. Upon irradiation with visible light, α,β‐unsaturated N‐acylpyrazoles react with N‐alkoxyphthalimides in the presence of a rhodium‐based chiral Lewis acid catalyst and the photosensitizer fac‐[Ir(ppy)3] to provide a C?C bond‐formation product with high enantioselectivity (up to 97 % ee) and, where applicable, with some diastereoselectivity (3.0:1 d.r.). Mechanistically, the synthetic strategy exploits a radical translocation (1,5‐hydrogen transfer) from an oxygen‐centered to a carbon‐centered radical with a subsequent stereocontrolled radical alkene addition.  相似文献   

16.
The metalloradical activation of o‐aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)‐carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium‐sized ring structures. Herein we make use of the intrinsic radical‐type reactivity of cobalt(III)‐carbene radical intermediates in the [CoII(TPP)]‐catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8‐membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8‐membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis‐allylic/benzallylic C?H bond to the carbene radical, followed by two divergent processes for ring‐closure to the two different types of 8‐membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o‐quinodimethanes (o‐QDMs) which undergo a non‐catalyzed 8π‐cyclization, DFT calculations suggest that ring‐closure to the monobenzocyclooctadienes involves a radical‐rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring‐closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt‐porphyrin catalyst.  相似文献   

17.
The major reactions of aryl substituted N-t-butylbenzamides upon electron-impact involve direct cleavage of a methyl radical, the loss of a butene molecule with the transfer of one hydrogen, or the loss of a butenyl radical with the transfer of two hydrogens. The last of these processes parallels the mass spectral behavior of aliphatic amides. Substituent effects indicate that electron-withdrawing groups on the aromatic ring enhance the two hydrogen transfer process, while electron-donating groups enhance the single hydrogen transfer process. Ion abundances, ionization potentials and appearance potentials are discussed with respect to correlation with σ+ values.  相似文献   

18.
Reaction between nitrogen‐centered radicals and unsaturated C?C bonds is an effective synthetic strategy for the construction of nitrogen‐containing molecules. Although the reactions between nitrogen‐centered radicals and alkenes have been studied extensively, their counterpart reactions with alkynes are extremely rare. Herein, the first example of reactions between azidyl radicals and alkynes is described. This reaction initiated an efficient cascade reaction involving inter‐/intramolecular radical homolytic addition toward a C?C triple bond and a hydrogen‐atom transfer step to offer a straightforward approach to NH‐1,2,3‐triazoles under mild reaction conditions. Both the internal and terminal alkynes work well for this transformation and some heterocyclic substituents on alkynes are compatible. This mechanistically distinct strategy overcomes the inherent limitations associated with azide anion chemistry and represents a rare example of reactions between a nitrogen‐centered radicals and alkynes.  相似文献   

19.
Bimolecular homolytic substitution (SH2) reactions of the methyl radical with a series of three‐membered ring compounds have been given a systematic theoretical study. These reactions proceed predominantly via the backside displacement. The formation of the new radical product is thermodynamically favorable probably due to the release of the ring strain. Natural bond orbital analysis reveals that SOMO → σ*(C‐X) (X= C, N, O) interaction plays a major role in these SH2 reactions, which shows the methyl radical mainly acts as a nucleophilic radical. In addition, according to the activation strain model analysis, an expected single correlation has not been obtained between the reactant distortion enthalpies and the overall activation enthalpies. However, these reactions can be divided into three groups and each group exhibits a good linear correlation. Marcus theory can thoroughly account for this phenomenon. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The unimolecular fragmentation reactions of the radical cations of diethyl, diisopropyl, dipropyl, isopropyl propyl, and di(tert-butyl) peroxide have been investigated by mass spectrometric and isotopic labeling techniques. Two competing pathways for unimolecular decomposition in the μs time regime (metastable ions) are observed: i) A combination of an α-C? C bond cleavage and a H migration gives rise to proton-bound dimers of two ketone or aldehyde molecules. ii) Ion/dipole complexes of alkyl cations and alkylperoxy radicals are generated by C–O bond cleavage. These complexes either exhibit direct losses of alkylperoxy radicals, or they rearrange via a coupled proton and H-atom transfer, this sequence of unprecedented isomerizations is completed by losses of alkyl radicals. Collisional activation experiments confirm that the ionic products of the latter process correspond to RR′C?OOH+; these ions can be regarded as protonated carbonyl oxides. In addition, we observe the elimination of alkenes leading to hydroperoxide radical cations and the expulsion of HO radicals. The latter process implies a C? C bond formation step between the two alkyl fragments leading to higher alkyl cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号