首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The combination of remote/standoff sensing and laser-induced fluorescence (LIF) spectroscopy shows potential for detection of uranyl (UO2(2+)) compounds. Uranyl compounds exhibit characteristic emission in the 450-600 nm (22,200 to 16,700 cm(-1)) spectral region when excited by wavelengths in the ultraviolet or in the short-wavelength portion of the visible spectrum. We report a parametric study of the effects of excitation wavelength [including 532 nm (18,797 cm(-1)), 355 nm (28,169 cm(-1)), and 266 nm (37,594 cm(-1))] and excitation laser power on solid-state uranium compounds. The uranium compounds investigated include uranyl nitrate, uranyl sulfate, uranyl oxalate, uranium dioxide, triuranium octaoxide, uranyl acetate, uranyl formate, zinc uranyl acetate, and uranyl phosphate. We observed the characteristic uranyl fluorescence spectrum from the uranium compounds except for uranium oxide compounds (which do not contain the uranyl moiety) and for uranyl formate, which has a low fluorescence quantum yield. Relative uranyl fluorescence intensity is greatest for 355 nm excitation, and the order of decreasing fluorescence intensity with excitation wavelength (relative intensity/laser output) is 355 nm > 266 nm > 532 nm. For 532 nm excitation, the emission spectrum is produced by two-photon excitation. Uranyl fluorescence intensity increases linearly with increasing laser power, but the rate of fluorescence intensity increase is different for different emission bands.  相似文献   

2.
Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.  相似文献   

3.
Laser Induced Breakdown Spectroscopy (LIBS) is presented as a tool for the elemental analysis of glass in forensic applications. Two harmonics of the Nd:YAG laser at 266 nm and 532 nm were used as the irradiation source for the analysis of several glass standards and soda–lime glass samples of interest to forensic scientists. Both lasers were kept at a constant energy of 20 mJ and focused using a 150 mm focal length lens. A series of experiments were also conducted to determine the importance of wavelength on lens-to-sample distance (LTSD) at each wavelength. It was determined that the optimal LTSD was found at ~ 1–2 mm focused into the surface for both wavelengths yet the crater depth resulting from the irradiation at 266 nm was significantly deeper (112 µm) than that from the 532 nm laser (41 µm). In addition, the analytical performance of LIBS on 5 NIST glasses and 6 automobile glasses at both wavelengths is reported. Good correlation for the quantitative analysis results for the trace and minor elements Sr, Ba and Al are reported along with the calibration curves, in most cases R2 > 0.95, using absolute intensities at various emission lines. Although 266 nm resulted in more mass removal, the 532 nm produced greater emission intensities. A slightly higher plasma density was determined for irradiation by 532 nm using the Stark broadening technique in comparison to the 266 nm irradiation.  相似文献   

4.
A series of studies has been undertaken to determine the susceptibility of the liquid sampling–atmospheric pressure glow discharge (LS–APGD) atomic emission source to easily ionizable element (EIE) effects. The initial portions of the study involved monitoring the voltage drop across the plasma as a function of the pH to ascertain whether or not the conductivity of the liquid eluent alters the plasma energetics and subsequently the analyte signal strength. It was found that altering the pH (0.0 to 2.0) in the sample matrix did not significantly change the discharge voltage. The emission signal intensities for Cu(I) 327.4 nm, Mo(I) 344.7 nm, Sc(I) 326.9 nm and Hg(I) 253.6 nm were measured as a function of the easily ionizable element (sodium and calcium) concentration in the injection matrix. A range of 0.0 to 0.1% (w/v) EIE in the sample matrix did not cause a significant change in the Cu, Sc, and Mo signal-to-background ratios, with only a slight change noted for Hg. In addition to this test of analyte response, the plasma energetics as a function of EIE concentration are assessed using the ratio of Mg(II) to Mg(I) (280.2 nm and 285.2 nm, respectively) intensities. The Mg(II)/Mg(I) ratio showed that the plasma energetics did not change significantly over the same range of EIE addition. These results are best explained by the electrolytic nature of the eluent acting as an ionic (and perhaps spectrochemical) buffer.  相似文献   

5.
《Analytical letters》2012,45(13):2641-2652
ABSTRACT

A simple, rapid and sensitive spectrofluorimetric method for the determination of floctafenine I (FL) in the presence of its degradation product floctafenic acid II (FLA) is developed. The method involves measuring the fluorescence intensity of FL in acetonitrile and in the presence of triethylamine (TEA) at an emission wavelength of 470 nm (excitation at 360 nm) by direct spectrofluorimetry and at an emission 465 nm (excitation 355 nm) by synchronous spectrofluorimetry. At these conditions FLA does not interfere. FLA is determined alone by measuring the fluorescence intensity of its solution in acetonitrile, without addition of TEA, at emission wavelength 460 nm (excitation 355 nm). The proposed method has been used for the assay of FL in tablets, plasma, urine and in mixtures with FLA. It gave highly accurate results for recovery of FL in the presence of its related acid.  相似文献   

6.
An acoustic signal was used for the internal standardization of laser-induced breakdown spectroscopy (LIBS) of a glazed wall tile. For the LIBS analyses, 1064 nm and 532 nm wavelengths of the Nd:YAG laser were utilized. The tile was depth profiled by a single-spot ablation from the glaze into the substrate. Some lines of major elements Si(I) 252.418, Si(I) 252.851, Al(I) 257.509, Cr(I) 295.368, Al(I) 309.271 nm and Ti(II) 334.904 nm were monitored. The decrease in the optical emissions during the ablation was successfully compensated for by normalization to the square power of the acoustic signal in the interval of 290–340 nm. This approach failed for the lines between 250–270 nm. The results were the same for both lasing wavelengths despite different irradiances. The acquired profiles are in good agreement with the reference X-ray fluorescence measurement.  相似文献   

7.
Visible matrix-assisted laser desorption/ionization (VIS-MALDI) was performed using 2-amino-3-nitrophenol as matrix. The matrix is of near-neutral pH, and has an optical absorption band in the near-UV and visible region. A frequency-doubled Nd:YAG laser operated at 532 nm wavelength was used for matrix excitation and comparisons were made with a frequency-tripled Nd:YAG laser (355 nm). Visible and ultraviolet (UV)-MALDI produce similar mass spectra for peptides, polymers, and small proteins with comparable sensitivities. Due to the smaller optical absorption coefficient of the matrix at 532 nm wavelength, the optical penetration depth is larger, and the sample consumption per laser shot in VIS-MALDI is higher than that of UV-MALDI. Nevertheless, VIS-MALDI using 2-amino-3-nitrophenol as matrix may offer a complementary technique to the conventional UV-MALDI method in applications where deeper laser penetration is required.  相似文献   

8.
Influence of laser wavelength, laser irradiance and the buffer gas pressure were studied in high irradiance laser ablation and ionization source coupled with an orthogonal time-of-flight mass spectrometer. Collisional cooling effects of energetic plasma ions were proved to vary significantly with the elemental mass number. Effective dissociation of interferential polyatomic ions in the ion source, resulting from collision and from high laser irradiance, was verified. Investigation of relative sensitivity coefficients (RSC) of different elements performed on a steel standard GBW01396, which was ablated at 1064 nm, 532 nm, 355 nm, and 266 nm, has demonstrated that the thermal ablation mechanism could play a critical role with the first three wavelengths, while 266 nm induces non-thermal ablation principally. Experimental results also indicated that there is no evident discrepancy for most metal elements on RSCs and LODs among four wavelengths at high irradiance, except that high boiling point elements like Nb, Mo, and W have higher RSCs at higher irradiance regions of 1064 nm, 532 nm, and 355 nm due to thermal ablation. A geological standard and a garnet stone were also used in the experiment subsequently, and their RSCs and LODs for metal elements show nonsignificant dependence on wavelength at designated irradiances. All results reveal that relatively uniform sensitivity can be achieved at any wavelength for metal elements in the solids used in our experiments at an appropriate irradiance for the low pressure high irradiance laser ablation and ionization source.  相似文献   

9.
Homogeneous spherical palladium (Pd) nanoparticles were synthesized by pulsed laser ablation of a solid Pd foil target submerged in deionized water, without the addition of any external chemical surfactant. The influence of laser wavelength (355, 532, and 1064 nm) and fluence (8.92, 12.74, and 19.90 J/cm2) on nucleation, growth, and aggregation of Pd nanoparticles were systematically studied. Microstructural and optical properties of the obtained nanoparticles were studied by field emission transmission electron microscopy (FETEM), energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. FETEM micrographs indicate that the average nanocrystallite sizes are relatively low (3–6 nm) and homogeneous for the particles synthesized at the laser wavelengths of 355 and 532 nm. However, at a laser wavelength of 1064 nm, the average nanocrystallite size is relatively large and inhomogeneous in nature. Moreover, we observe that the mean diameter and production rate of particles increases with an increase in laser fluence. The selected area electron diffraction patterns obtained from isolated Pd nanoparticles show the characteristic diffused electron diffraction rings of polycrystalline materials with a face-centered cubic structure. Absorbance spectrum of the synthesized nanoparticle solution shows a broad absorption band, which corresponds to a typical inter-band transition of a metallic system, indicating the production of pure palladium nanoparticles. The present work provides new insights into the effect of laser wavelength and fluence on the control of size and aggregation of palladium nanoparticles in the liquid medium.  相似文献   

10.
Radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometer was used in the determination of Y, Sc and rare earth elements in Eu2O3 or Lu2O3 as pure rare earth matrices. The Mg II 280.270 nm/Mg I 285.213 nm line intensity ratio was measured to evaluate the robustness of the operating conditions. The operating conditions were affected by varying the incident power and sheathing gas flow rate. The carrier gas flow rate remained a constant value. The relationship between the Mg II 280.270 nm/Mg I 285.213 nm ratio and the excitation temperature was obtained. A dependence of the magnesium ratio in the pure solvent and the corresponding values in the presence of the above matrices was established.  相似文献   

11.
《Microchemical Journal》2008,88(2):175-179
Glow discharge plasmas with helium–(0–16%) nitrogen mixed gas were investigated as an excitation source in optical emission spectrometry. The addition increases the sputtering rate as well as the discharge current, because nitrogen molecular ions, which act as primary ions for the cathode sputtering, are produced through Penning-type ionization collisions between helium metastables and nitrogen molecules. The intensity of a silver atomic line, Ag I 338.29 nm, is monotonically elevated along with the nitrogen partial pressure added. However, the intensities of silver ionic lines, such as Ag II 243.78 nm and Ag II 224.36 nm, gave different dependence from the intensity of the atomic line: Their intensities had maximum values at a nitrogen pressure of 30 Pa when the helium pressure and the discharge voltage were kept at 2000 Pa and 1300 V. This effect is principally because the excitations of these ionic lines are caused by collisions of the second kind with helium excited species such as helium metastables and helium ion, which are quenched through collisions with nitrogen molecules added to the helium plasma. The sputtering rate could be controlled by adding small amounts of nitrogen to the helium plasma, whereas the cathode sputtering hardly occurs in the pure helium plasma.  相似文献   

12.
In Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), it has been observed that the emission intensity of some atomic lines is enhanced or depressed by the presence of carbon in the matrix. The goal of this work was to investigate the origin and magnitude of the carbon-related matrix effects in ICP-AES. To this end, the influence of the carbon concentration and source (i.e. glycerol, citric acid and potassium hydrogen phthalate), the experimental conditions and sample introduction system on the aerosol characteristics and transport, plasma excitation conditions and the emission intensity of several atomic and ionic lines of a total of 15 elements has been studied. Results indicate that carbon related matrix effects do not depend on the carbon source and they become more severe when the amount of carbon loaded into the plasma increases, i.e., when using: (i) carbon concentrations higher than 5 g L− 1; (ii) high sample uptake rates; and (iii) efficient sample introduction systems. Thus, when introducing carbon into the plasma, the emission intensity of atomic lines with excitation energies below 6 eV is depressed (up to 15%) whereas the emission intensity of atomic lines of higher excitation energies (i.e. As and Se) are enhanced (up to 30%). The emission intensity of the ionic lines is not affected by the presence of carbon. The origin of the carbon-related interferences on the emission intensity of atomic lines is related to changes in the line excitation mechanism since the carbon containing solutions show the same aerosol characteristics and transport efficiencies as the corresponding aqueous solutions. Based on the previous findings, a calibration approach for the accurate determination of Se in a Se-enriched yeast certified material (SELM-1) has been proposed.  相似文献   

13.
Three/two-photon resonant multiphoton ionization (MPI) of the CH3I monomer has been studied in the gas phase at 532 and 355 nm using time-of-flight mass spectrometry. Under low laser intensity (approximately 10(9) W/cm2) the mass spectra showed peaks at m/z 15, 127 and 142, corresponding to [CH3]+, [I]+ and [CH3I]+ species, at both these wavelengths. The laser power dependence for [CH3I]+, [I]+ and [CH3]+ ions showed a three-photon dependence at 532 nm. For the same three ions, photoionization studies at 355 nm gave a power dependence of 2. Both these results suggest that a vibronic energy level at approximately 7 eV, lying in the Rydberg C state, acts as a resonant intermediate level in ionization of CH3I. In the case of 355 nm, with increasing intensity additional peaks at m/z 139 and 141 were observed which could be assigned to [CI]+ and [CH2I]+ fragments. In contrast, for high intensity radiation at 532 nm ( approximately 2 x 10(10) W/cm2), only the [CI]+ fragment was observed. At these wavelengths, fragment ions observed in mass spectra mainly arise from photodissociation of the parent ion. Experiments at another wavelength in the visible region (564.2 nm) confirmed the results obtained at 532 nm. In order to assess the role of the A state in these MPI experiments, additional experiments were performed at 266 and 282.1 nm, which access the A state directly via a one-photon transition, and showed absence of a surviving precursor ion. Reaction energies for various possible dissociation channels of CH3I/[CH3I]+/[CH2I]+ were calculated theoretically at the MP2 level using the GAMESS electronic structure program.  相似文献   

14.
Using two axially-viewed inductively coupled plasma (ICP) systems that exhibited different behaviors to matrix effects, the sensitivity of the Mg II 280.270 nm/ Mg I 285.213 nm line intensity ratio to the ICP operating conditions and to matrix effects was compared to that observed for alternative ionic-to-atomic line intensity ratios such as the Cd II 226.502 nm/Cd I 228.802 nm, Cr II 267.716 nm/Cr I 357.868 nm, Ni II 231.604 nm/Ni I 232.138 nm, Pb II 220.353 nm/Pb I 217.000 nm, and Zn II 206.200 nm/Zn I 213.857 nm ratios. Both robust and non-robust conditions were used. Some lines behaved differently, in particular the Mg I and Cr I lines, not only as a function of the matrix, but also as a function of the ICP system. The Mg II/Mg I ratio was found to remain a good compromise to follow changes in plasma conditions. The use of several ionic-to-atomic line ratios confirmed that axial viewing leads to matrix effects that are particularly sensitive for atomic lines. The effects cannot be totally suppressed, even under robust conditions, and regardless of the ICP system. An alternative to minimize matrix effects was the use of a buffer such as Cs at 10 g l−1.  相似文献   

15.
The differences in artifacts associated with voltage-pulsed and laser-pulsed (wavelength = 532 or 355 nm) atom-probe tomographic (APT) analyses of nanoscale precipitation in a high-strength low-carbon steel are assessed using a local-electrode atom-probe tomograph. It is found that the interfacial width of nanoscale Cu precipitates increases with increasing specimen apex temperatures induced by higher laser pulse energies (0.6-2 nJ pulse(-1) at a wavelength of 532 nm). This effect is probably due to surface diffusion of Cu atoms. Increasing the specimen apex temperature by using pulse energies up to 2 nJ pulse(-1) at a wavelength of 532 nm is also found to increase the severity of the local magnification effect for nanoscale M2C metal carbide precipitates, which is indicated by a decrease of the local atomic density inside the carbides from 68 ± 6 nm(-3) (voltage pulsing) to as small as 3.5 ± 0.8 nm(-3). Methods are proposed to solve these problems based on comparisons with the results obtained from voltage-pulsed APT experiments. Essentially, application of the Cu precipitate compositions and local atomic density of M2C metal carbide precipitates measured by voltage-pulsed APT to 532 or 355 nm wavelength laser-pulsed data permits correct quantification of precipitation.  相似文献   

16.
In this work, laser induced breakdown spectroscopy (LIBS) analysis of the soil samples collected from Aceh, a place in Indonesia worst affected by 2004 Indian Ocean tsunami, was conducted. In the LIBS experimental system, a high energy pulsed laser beam was focused on the tsunami affected soil samples and the atomic emission lines, originating from the laser induced plasma were recorded using locally developed laser induced breakdown spectrometer. Our results show that the concentrations of many elements especially terrestrial markers, namely titanium, iron, and carbonate marker such as magnesium, are higher in the tsunami-affected samples than that in the unaffected samples collected from the same neighborhood. The quantification of Ti, Fe and Mg were carried out using Ti II 334.94, Fe I 438.35, and Mg I 277.98 nm atomic transition lines respectively by drawing the calibration curve by preparing the samples of known concentrations in unaffected soil matrix. In order to ensure accurate quantification, the local thermal equilibrium of the laser-induced plasma was verified using Mc Writher criterion, for which the plasma temperature was estimated using linearized Boltzmann plot for six iron atomic transition lines and the electron number density in the plasma was estimated using Stark broadened Fe I 540.4 nm atomic lines. The estimated temperature and electron number density of the laser induced plasma are 9642 K and 3.5 × 1016 cm?3 respectively. The concentrations of Ti, Fe and Mg in tsunami unaffected soil are 0.09, 3.2 and 0.02 w/w% and in tsunami affected soil are 0.14, 7.9 and 0.048 w/w% respectively. These values are in good agreement with XRF data. The elemental ratios extracted from LIBS signal intensity revealed that LIBS emission intensity ratios of several elements, such as Si/Ti, Al/Ti and Sr/Ba are potential candidates as the distinctive geochemical signature for identification the soil impacted and unimpacted by the 2004 Indian Ocean giant tsunami. The advantage of using LIBS for the elemental analysis is that the sample can be analyzed in its pristine form without any need cumbersome sample preparation method, which has the risk of bringing in external additives through chemicals used for the sample preparation. Other advantages of LIBS technique are that the analysis can be in situ and can be carried out remotely.  相似文献   

17.
An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N2+ 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed.  相似文献   

18.
A novel method is described for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry (ICP-AES). The method is based on measurement of the vertically resolved atomic emission of analyte within the plasma and therefore requires the addition of no reagents to the sample solution or to the plasma. Plasma-related matrix effects enhance analyte emission intensity low in the plasma but depress the same emission signal at higher positions. Such bipolar behavior is true for all emission lines and matrices that induce plasma-related interferences. The transition where the enhancement is balanced by the depression (the so-called cross-over point) results in a spatial region with no apparent matrix effects. Although it would be desirable always to perform determinations at this cross-over point, its location varies between analytes and from matrix to matrix, so it would have to be found separately for every analyte and for every sample. Here, a novel approach is developed for the in-situ determination of the location of this cross-over point. It was found that the location of the cross-over point is practically invariant for a particular analyte emission line when the concentration of the matrix was varied. As a result, it is possible to determine in-situ the location of the cross-over point for all analyte emission lines in a sample by means of a simple one-step sample dilution. When the original sample is diluted by a factor of 2 and the diluted sample is analyzed again, the extent of the matrix effect is identical (zero) between the original sample and the diluted sample at one and only one location — the cross-over point. This novel method was verified with several single-element matrices (0.05 M Na, Ca, Ba and La) and some mixed-element matrices (mixtures of Na–Ca, Ca–Ba, and a plant-sample digest). The inaccuracy in emission intensity due to the matrix effect could be as large as − 30% for conventional measurements in the normal analytical zone, but is reduced to within 5% with this new method. The major currently known limitation is that the accuracy of the method is highly sensitive to fluctuations and noise in the vertical emission-intensity profile, so the stability of the ICP system must be controlled to preferably within 1%.  相似文献   

19.
Laser induced breakdown spectrometry (LIBS) combined with laser induced fluorescence spectrometry (LIFS) has been applied for detection of trace-level phosphorus in steel. The plasma induced by irradiation of Nd:YAG laser pulse for ablation was illuminated by the 3rd harmonic of Ti:Sapphire laser tuned to one of the resonant lines for phosphorus in the wavelength region of 253–256 nm. An excitation line for phosphorus was selected to give the highest signal-to-noise ratio. Fluorescence signals, P213.62 and P214.91 nm, were observed with high selectivity at the contents as low as several tens µg g− 1. Fluorescence intensities were in a good linear correlation with the contents. Fluorescence intensity ratio of a collisionally assisted line (213.62 nm) to a direct transition line (214.91 nm) was discussed in terms of the analytical conditions and experimental results were compared with a calculation based on rate equations. Since the fluorescence signal light in the wavelength range longer than 200 nm can be transmitted relatively easily, even through fiber optics of moderate length, LIBS/LIFS would be a versatile technique in on-site applications for the monitoring of phosphorus contents in steel.  相似文献   

20.
Laser-Induced Breakdown Spectroscopy of silicon was performed using a nanosecond pulsed frequency doubled Nd:YAG (532 nm) laser. The temporal evolution of the laser ablation plumes in air at atmospheric pressure and at an ambient pressure of ∼ 10− 5 mbar is presented. Electron densities were determined from the Stark broadening of the Si (I) 288.16 nm emission line. Electron densities in the range of 6.91 × 1017 to 1.29 × 1019 cm− 3 at atmospheric pressure and 1.68 × 1017 to 3.02 × 1019 cm− 3 under vacuum were observed. Electron excitation temperatures were obtained from the line to continuum ratios and yielded temperatures in the range 7600–18,200 K at atmospheric pressure, and 8020–18,200 K under vacuum. The plasma morphology is also characterized with respect to time in both pressure regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号