首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The usefulness of the secondary line at 252.744 nm and the approach of side pixel registration were evaluated for the development of a method for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The influence of side pixel registration on the sensitivity and linearity was investigated by measuring at wings (248.325, 248.323, 248.321, 248.329, and 248.332 nm) of the main line for Fe at 248.327 nm. For the secondary line at 252.744 nm or side pixel registration at 248.325 nm, main lines for Cu (324.754 nm), Mn (279.482 nm) and Zn (213.875 nm), sample flow-rate of 5.0 mL min−1 and calibration by matrix matching, analytical curves in the 0.2-1.0 mg L−1 Cu, 1.0-20.0 mg L−1 Fe, 0.2-2.0 mg L−1 Mn, 0.1-1.0 mg L−1 Zn ranges were obtained with linear correlations better than 0.998. The proposed method was applied to seven soil samples and two soil reference materials (IAC 277; IAC 280). Results were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to soil extracts containing 0.15 and 0.30 mg L−1 Cu, 7.0 and 14 mg L−1 Fe, 0.60 and 1.20 mg L−1 Mn, 0.07 and 0.15 mg L−1 Zn, varied within the 94-99, 92-98, 93-101, and 93-103% intervals, respectively. The relative standard deviations (n = 12) were 2.7% (Cu), 1.4% (Fe - 252.744 nm), 5.7% (Fe - 248.325 nm), 3.2% (Mn) and 2.8% (Zn) for an extract containing 0.35 mg L−1 Cu, 14 mg L−1 Fe, 1.1 mg L−1 Mn and 0.12 mg L−1 Zn. Detection limits were 5.4 μg L−1 Cu, 55 μg L−1 Fe (252.744 nm), 147 μg L−1 Fe (248.325 nm), 3.0 μg L−1 Mn and 4.2 μg L−1 Zn.  相似文献   

2.
A method for determination of B, Ca, Cu, Fe, K, Mg, Mn, Mo, P, S and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) is proposed. This method is based on special features of HR-CS-AAS, such as side pixel registration, wavelength integrated absorbance, and molecular absorption bands, for determining macro- and micronutrients in foliar analysis without requiring several different strategies for sample preparation and adjustment of the analytes concentration ranges. Plant samples were analyzed and results for certified materials were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to plant digests varied within the 82–112% interval. Relative standard deviations (n = 12) were lower than or equal to 5.7% for all analytes in all concentration ranges.  相似文献   

3.
The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88–115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8–9 mL of sample.  相似文献   

4.
The present paper proposes a simple and fast analytical procedure for the sequential multi-element determination of Ca and Mg in dairy products employing sampling slurry and high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). Considering the high concentration of these species in these matrices, the analytical measurements were carried out at the secondary lines of 239.856 and 202.852 for Ca and Mg, respectively. The experimental conditions established for the preparation of the slurries during the optimization step were: 2.0 mol L− 1 hydrochloric acid, sonication time of 20 min and sample mass of 1.0 g for a slurry volume of 25 mL. Experiments demonstrated that the analytical curves can be established using the external calibration technique employing aqueous standards. The method allows the determination of Ca and Mg with limits of quantification of 0.038 and 0.016 mg g− 1, respectively. The precision was evaluated under reproducibility and repeatability conditions and expressed as relative standard deviation. The results varied from 2.7 to 2.9% (all tests with n = 10) and using a yogurt sample containing Ca and Mg concentrations of 1.40 and 0.13 mg g− 1, respectively.The accuracy was confirmed by the analysis of a certified reference material of non-fat milk powder furnished by the National Institute of Standard and Technology. The proposed method was applied for the determination of Ca and Mg in yogurt, cow milk and milk powder samples. The samples were also analyzed after complete acid digestion and Ca and Mg determination by HR-CS FAAS. No statistical difference was observed between the results obtained by both of the procedures performed.  相似文献   

5.
In this work the least-squares background correction (LSBC) and internal standardization (IS) techniques were combined to eliminate spectral and transport interferences in the determination of Pb in phosphoric acid by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). Blanks, samples and reference solutions [0.10–1.00 mg L− 1 Pb in 1% (v/v) HNO3] were spiked with 4.00 mg L− 1 Co used as internal standard. For absorbance measurements at the wavelength integrated absorbance equivalent to 9 pixels, correlations between the ratio of absorbance of Pb to absorbance of Co and the analyte concentration were close to 0.9992. Relative standard deviations of measurements varied from 0.6 to 4% and 1 to 7% (n = 12) without and with IS/LSBC techniques, respectively. Recoveries for Pb spikes were in the 96–104% and 76–180% range with and without IS/LSBC, respectively. The limit of detection improved with IS/LSBC techniques. Accuracy of the proposed method was checked for the determinations of Pb in commercial phosphoric acid samples and results obtained with IS were better than those without IS.  相似文献   

6.
In high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with a pixel detector, such as a charge-coupled device array for signal registration, the absorbance A not only depends on the absorption coefficient, the length of the absorbing layer and the number of absorbing atoms therein, but also on the spectral interval over which the signal is recorded, i.e., the spectral bandwidth per pixel and the number of pixels evaluated. Although the problem of different (absorption and emission) line widths is known for several decades already to exist in conventional line source AAS, it is usually disregarded. By choosing a certain number of pixels in HR-CS AAS a defined wavelength interval can be selected over which the absorbance is recorded. As the numerical values obtained this way are not directly comparable with the conventional absorbance, it is necessary to define new terms and symbols for this kind of signal evaluation. With a steady-state signal the individual pixel absorbance values can be added or integrated, resulting in the unit-free wavelength-selected absorbance (WSA, symbol AΣ), or the wavelength-integrated absorbance (WIA, symbol Aλ) having a wavelength unit, such as picometers (pm). Similarly, with transient signals one can add-up or integrate (over wavelength) the individual integrated (in time) absorbance values of the selected pixels to obtain the volume under the absorbance peak. This results in the peak volume selected absorbance (PVSA, symbol AΣ,int), and the peak volume integrated absorbance (PVIA, symbol Aλ,int), with the units second (s) and second times picometer (s pm), respectively. For comparison purposes, however, the integrated absorbance values, i.e., WIA or PVIA, should be used since they are instrument-independent.  相似文献   

7.
This paper explores the potential of commercially available high-resolution continuum source graphite furnace atomic absorption spectrometry instrumentation for the simultaneous or sequential monitoring of various atomic lines, in an attempt to highlight the analytical advantages that can be derived from this strategy. In particular, it is demonstrated how i) the monitoring of multiplets may allow for the simple expansion of the linear range, as shown for the measurement of Ni using the triplet located in the vicinity of 234.6 nm; ii) the use of a suitable internal standard may permit improving the precision and help in correcting for matrix-effects, as proved for the monitoring of Ni in different biological samples; iii) direct and multi-element analysis of solid samples may be feasible on some occasions, either by monitoring various atomic lines that are sufficiently close (truly simultaneous monitoring, as demonstrated in the determination of Co, Fe and Ni in NIST 1566a Oyster tissue) or, alternatively, by opting for a selective and sequential atomization of the elements of interest during every single replicate. Determination of Cd and Ni in BCR 679 White cabbage is attempted using both approaches, which permits confirming that both methods can offer very similar and satisfactory results. However, it is important to stress that the second approach provides more flexibility, since analysis is no longer limited to those elements that show very close atomic lines (closer than 0.3 nm in the ultraviolet region) with a sensitivity ratio similar to the concentration ratio of the analytes in the samples investigated.  相似文献   

8.
The literature about direct solid sample analysis of the past 10–15 years using electrothermal atomic absorption spectrometry has been reviewed. It was found that in the vast majority of publications aqueous standards were reported as having been used for calibration after careful program optimization. This means the frequently expressed claim that certified reference materials with a matrix composition and analyte content close to that of the sample have to be used for calibration in solid sample analysis is not confirmed in the more recent literature. There are obviously limitations, and there are examples in the literature where even calibration with certified reference materials did not lead to accurate results. In these cases the problem is typically associated with spectral interferences that cannot be corrected properly by the systems available for conventional line source atomic absorption spectrometry, including Zeeman-effect background correction. Using high-resolution continuum source atomic absorption spectrometry, spectral interferences become visible owing to the display of the spectral environment at both sides of the analytical line at high resolution, which makes program optimization straightforward. Any spectrally continuous background absorption is eliminated automatically, and even rapidly changing background absorption does not cause any artifacts, as measurement and correction of background absorption are truly simultaneous. Any kind of fine-structured background can be eliminated by “subtracting” reference spectra using a least-squares algorithm. Aqueous standards are used for calibration in all published applications of high-resolution continuum source atomic absorption spectrometry to direct solid sample analysis. This contribution is based on a presentation given at the Colloquium for Analytical Atomic Spectroscopy (CANAS ‘07) held March 18–21, 2007 in Constance, Germany.  相似文献   

9.
The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal.  相似文献   

10.
The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D2 BC system of LS AAS.  相似文献   

11.
The determination of phosphorus by graphite furnace atomic absorption spectrometry at the non-resonance line at 213.6 nm, and the capability of Zeeman-effect background correction (Z-BC) to deal with the fine-structured background absorption due to the PO molecule have been investigated in the presence of selected chemical modifiers. Two line source atomic absorption spectrometers, one with a longitudinally heated and the other with a transversely heated graphite tube atomizer have been used in this study, as well as two prototype high-resolution continuum source atomic absorption spectrometers, one of which had a longitudinally arranged magnet at the furnace. It has been found that Z-BC is capable correcting very well the background caused by the PO molecule, and also that of the NO molecule, which has been encountered when the Pd + Ca mixed modifier was used. Both spectra exhibited some Zeeman splitting, which, however, did not cause any artifacts or correction errors. The practical significance of this study is to confirm that accurate results can be obtained for the determination of phosphorus using Z-BC.  相似文献   

12.
Baysal A  Akman S 《Talanta》2011,85(5):2662-2665
Sulphur in coal was determined using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS) with actylene/air flame. The C-S absorption band at 258.056 nm was found the most suitable analytical line with respect to sensitivity and spectral interferences. The instrumental parameters were optimized. The coal samples were dried and dissolved using microwave-assisted digestion technique. The validity of the method was tested using standard reference material and certified values were found in the limits of 95% confidence level. Since the concentrations of matrix elements of coal other than carbon are low enough not to cause any spectral interferences, the linear calibration method was applied in all quantifications without any problem. The calibration standards were prepared in sulphuric acid. The method was accurate, fast, simple and sensitive. The limit of detection (LOD, 3δ, N = 10) and the limit of quantification (LOQ, 10δ, N = 10) were found to be 0.01 and 0.03% (w/w), respectively. The sulphur concentrations of various kinds of the coal samples received around Turkey were determined. The sulphur contents of the coal samples were ranged from ≤LOQ to 1.2%.  相似文献   

13.
This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 g) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 °C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 °C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 °C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 °C and atomization at 1500 °C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g–1, calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6–1.2 mg were analyzed.Dedicated to the memory of Wilhelm Fresenius  相似文献   

14.
This work describes the method development for the simultaneous determination of Cd and Fe using the main resonance line of Cd at 228.802 nm and a secondary Fe line at 228.725 nm, and high-resolution continuum source electrothermal atomic absorption spectrometry (HR-CS ET AAS). Two certified reference materials and two ‘real’ samples of industrial and domestic sewage sludge have been analyzed as slurries prepared in a mixture of HF and HNO3. The simultaneous determination has been performed using a short temperature program of only 30 s, without a pyrolysis stage and with two atomization stages, at 1300 °C and 2300 °C, taking into consideration the significantly different thermal characteristics of Cd and Fe. Structured background, which is likely due to the presence of one or more diatomic molecules, including SiO, has been detected. However, there has been no spectral overlap between molecular bands and the atomic lines of Cd and Fe, making possible the determination to be carried out using only automatic correction for continuous background. Calibration against aqueous standards lead to good agreement between certified or informed values and the determined values, at a statistical confidence level of 95%; recovery tests were performed for real samples, resulting in recoveries ranging from 90 to 105%. Detection limits of 0.03 and 90 µg g 1 for Cd and Fe, respectively, have been obtained, which are adequate for the purpose.  相似文献   

15.
High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) has been used to investigate spectral and non-spectral interferences found with a conventional line source atomic absorption spectrometer in the determination of aluminum in pharmaceutical products containing elevated iron and sugar concentrations. A transversely heated graphite furnace was used as the atomizer in both spectrometers. The two most sensitive aluminum lines at 309.3 nm and 396.2 nm were investigated and it was found that an iron absorption line at 309.278 nm, in the vicinity of the aluminum line at 309.271 nm, could be responsible for some spectral interference. The simultaneous presence of iron and the organic components of the matrix were responsible for radiation scattering, causing high continuous and also structured background absorption at both wavelengths. The aluminum and iron absorption could not be separated in time, i.e., the iron interference could not be eliminated by optimizing the graphite furnace temperature program. However, an interference-free determination of aluminum was possible carrying out the measurements with HR-CS AAS at 396.152 nm after applying least squares background correction for the elimination of the structured background. Analytical working range and other figures of merit were determined and are presented for both wavelengths using peak volume registration (center pixel ± 1) and the center pixel only. Limits of detection and characteristic masses ranged from 1.1 to 2.5 pg and 13 to 43 pg, respectively. The method was used for the determination of the aluminum contamination in pharmaceutical formulations for iron deficiency treatment, which present iron concentrations from 10 to 50 g l− 1. Spike recoveries from 89% to 105% show that the proposed method can be satisfactorily used for the quality control of these formulations.  相似文献   

16.
The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g−1 and 16.4 ± 0.75 μg g−1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g−1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g−1, and the limits of quantification were 25 and 27 ng g−1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g−1 Cd, and hence below the maximum value of 20 μg g−1 Cd permitted by Brazilian legislation.  相似文献   

17.
不使用稳定剂,直接用蒸馏水制成芹菜样品的悬浮液,用SrCl2消除相关干扰,在磁力搅拌下进样,应用标准曲线法在同一溶液中利用空气——乙炔火焰原子吸收光谱法测定Zn、Fe、Mn、Cu等4种元素含量。结果表明,芹菜中含有丰富的Zn以及Fe、Mn、Cu。本文考察了方法的准确度和精密度。试验表明,在选定的条件下,芹菜中各元素间相互不干扰,可在同一份制备液中进行4种元素的分别测定。方法的加标回收率在90.0%~102.0%之间,相对标准偏差在0.21%~0.77%之间(n=3)。测定结果与高温灰化法一致,t检验表明两者无显著性差异。  相似文献   

18.
Vapor generation and atomization conditions in a heated quartz tube to detect Ag, Cd, Co, Cu, Ni and Zn using High Resolution Continuum Source AAS (HRCSAAS), were optimized. Vapors were generated after mixing acidified solutions containing 8-hydroxiquinoline (oxine) with sodium tetrahydroborate. Afterwards, they were swept to the heated quartz cell by an argon flow.Reaction loop size and temperature of the quartz cell were optimized for each element. A temperature of 960 °C was selected as a compromise value to detect most of the metals. Afterwards, a Plackett–Burmann design was proposed to select which parameters were most important. Type of acid and its concentration were the most statistical significant variables. Optimum conditions for sequential detection of Cd, Cu, Ni and Zn were: 1 mg L 1 Co as catalyst, 250 mg L 1 oxine, 0.6 M nitric acid, 1.75% (w/w) sodium tetrahydroborate (prepared in 0.4 (w/v)% NaOH), a reaction loop of 250 µL, and a 25 L h 1 carrier Ar flow. Ag and Co were each detected in their own optimized conditions. Analytical performance of the system was evaluated in connection with a selected pixel number, and spectral correction was used to eliminate NO absorption bands interference in Zn detection. Detection limits were in the range of 1.5–18 μg L 1 for Ag, Cu, Cd and Zn, whereas sensitivity was worst for Co (169 μg L 1) and Ni (586 μg L 1). Atomization in a quartz cell of Co and Ni volatile species, generated by an addition of sodium tetrahydroborate to an acidified solution of the analytes, was reported for the first time in this paper. Precision expressed as RSD(%) had values lower than 10% except for Ni.  相似文献   

19.
The literature about applications of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with electrothermal atomization is reviewed. The historic development of HR-CS AAS is briefly summarized and the main advantages of this technique, mainly the ‘visibility’ of the spectral environment around the analytical line at high resolution and the unequaled simultaneous background correction are discussed. Simultaneous multielement CS AAS has been realized only in a very limited number of cases. The direct analysis of solid samples appears to have gained a lot from the special features of HR-CS AAS, and the examples from the literature suggest that calibration can be carried out against aqueous standards. Low-temperature losses of nickel and vanadyl porphyrins could be detected and avoided in the analysis of crude oil due to the superior background correction system. The visibility of the spectral environment around the analytical line revealed that the absorbance signal measured for phosphorus at the 213.6 nm non-resonance line without a modifier is mostly due to the PO molecule, and not to atomic phosphorus. The future possibility to apply high-resolution continuum source molecular absorption for the determination of non-metals is discussed.  相似文献   

20.
An operationally defined fractionation protocol was developed to study the partitioning of Ca, Mg, Fe and Zn in UHT cow milks. The method was based on sorption of distinct metal species by two ion exchange columns, namely strong cation exchanger Dowex 50Wx4 and strong anion exchanger Dowex 1x4, connected in a series. The evaluation of the donation of metal species classes distinguished, that is cationic and anionic fractions, was made after splitting the columns and elution of metal groupings with a 2.0 mol l−1 HCl solution, followed by the determination of metal concentrations in the resulting eluates. The amount of third, inert fraction was assessed by measuring metal contents in the effluents obtained after passage of the samples through the columns. The results achieved utilizing two-column ion exchange based procedure were compared with those obtained for the approach in which the columns were considered separately. The fractionation pattern for each metal studied was thoroughly discussed in light of available knowledge relating to the composition of milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号