首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulation has been used to study the fluid dynamics and chemical kinetics in a supersonic nozzle situated downstream of a plasma reactor. To assist in system scale-up and optimization, effective nozzle design can help in maximizing the transport of chemically active species to the substrate. This paper examines the chemical non-equilibrium of the flow, the effect of different flow parameters, and the effect of different nozzle geometries. A three species hydrogen-argon gas mixture was modeled with finite dissociation and recombination. Non-equilibrium transport and thermodynamic mixture properties based on species pair collision cross sections were implemented. Running a plasma torch off design power can significantly alter power losses through the nozzle wall and subsequently change the species distribution at the nozzle exit. Decreasing the effective nozzle throat diameter can notably decrease atomic concentrations. Small changes in upstream or downstream pressures have a negligible effect on supersonic species transport through the nozzle. Flow separation can be avoided by correctly designing the divergent portion of the nozzle.  相似文献   

2.
The dependence of gliding arc gas discharge characteristics, including gas flow field, arc column motion and volatile organic compounds (VOCs) decomposition performance, on reactor configuration parameters was investigated based on numerical simulation and laboratory experimental findings. For a given supply voltage (10 kV) and a certain nozzle outlet diameter (1.5 mm), increasing the electrodes gap (1–4 mm) or decreasing vertical distance between electrode throat and nozzle outlet (25–10 mm) will increase the gas flow rate through the electrode throat, the gas velocity in the plasma region, the arc column velocity, the maximum attainable position of the arc column and the electrical power consumption, also, higher VOCs decomposition rate and lower specific energy requirement are observed according to the n-butane and toluene decomposition experiments.  相似文献   

3.
气流床煤气化炉内流动、混合与反应过程的研究进展   总被引:1,自引:0,他引:1  
气流床气化过程涉及高温高压下湍流多相流动与复杂化学反应过程的相互作用,涵盖喷嘴雾化与弥散、复杂多相射流流动、炉内湍流混合、复杂气化反应、火焰结构及温度分布等诸多方面,是世界各国研究的热点.对近年来世界各国在气流床气化过程研究上取得的进展进行了综述,包括喷嘴雾化与颗粒弥散机理与雾化过程的影响因素、撞击流驻点偏移规律和撞击面振荡规律、撞击火焰结构与炉内三维温度场、典型煤种气化反应特性与石油焦气化特性以及气流床气化过程模拟.对气流床气化过程未来的研究重点进行了展望.  相似文献   

4.
利用流体力学模拟软件Fluent构建了电喷雾离子源的二维模型,并基于所构建的模型探讨了离子源构型、辅助气引入方式、气体流速对源内流场分布的影响。结果表明,相比于其它两种结构,矩形结构的离子源能够提供较为稳定的流场。通入同轴辅助气和正交方向辅助气都能够起到聚集样品喷雾的效果,但作用效果却并不相同。提高同轴辅助气流速,能够增大喷口处混返区域,改变气流驻点位置。而增大正交方向辅助气流速,虽然同样能够提高源内各处气体流速,但并不会改变喷口处混返区域的大小。以Turbo V离子源为研究对象,考察了喷针位置、辅助气流速对溶液总离子流的影响,实验趋势与模拟结果基本吻合。  相似文献   

5.
Wang  Mengxiao  Boldarev  A. S.  Li  Xingjia  Cao  Yunjiu  Chen  Guanglong 《Journal of Cluster Science》2021,32(5):1223-1228
Journal of Cluster Science - Formation of pure gaseous water cluster in the supersonic gas flow from a conical nozzle was investigated by simulation. The simulation results show that average size...  相似文献   

6.
A numerical simulation has been performed of a high-velocity nitrogen hydrogen plasma jet in air at atmospheric pressure including finite-rate chemical kinetics. Ions, electrons, and neutral atoms and molecules are treated as separate species in the plasma mixture. The chemical reactions considered are dissociation of molecular species, ionization of atomic species, charge exchange and dissociatioe recombination of nitrogen, and hydrogen-oxygen reactions. The calculational results show that strong departures from ionization and dissociation equilibrium develop in the downstream region as the chemical reactions freeze out at lower temperatures, in spite of the assumed chemical equilibrium at the nozzle exit. The calculations also show that ionized species are over-populated throughout the flow, while dissociated species in the core of the jet are underpopulated near the nozzle exit and become over-populated farther downstream. This initial underpopulation is due to diffusive depletion of dissociated species and enrichment of molecular species in the core of the jet.  相似文献   

7.
The characteristics of the plasma jet emanating from a dc non-transferred plasma torch is affected by many factors including arc current, type of gas, gas flow rate, gas injection configuration and torch geometry. The present work focuses on experimental investigation of the influence of shroud gas injection configuration on the I–V characteristics and electro-thermal efficiency of a dc non-transferred plasma torch operated in nitrogen at atmospheric pressure. The plasma gas is injected into the torch axially and shroud gas is injected through three different nozzles such as normal, sheath and twisted nozzles. The effects of flow rates of plasma/axial gas and arc current on I–V characteristics and electro-thermal efficiency of the torch holding different nozzles are investigated. The I–V characteristics and electro-thermal efficiency of the torch are found to be strongly influenced by the shroud gas injection configuration. The effect of arc current on arc voltage decreases with increasing the axial gas flow rate. At higher axial gas flow rate (>?45 lpm), the I–V characteristics of the plasma torch are similar irrespective of the nozzle used. The variation of electro-thermal efficiency with arc current is almost similar to that of arc voltage with arc current. As expected, the electro-thermal efficiency is increased when the axial gas flow rate is increased and at higher axial gas flow rate, it is not influenced by the arc current and shroud gas configuration. The plasma torch with normal nozzle may be better in the range of operating conditions used in this study.  相似文献   

8.
A new design is proposed for dc plasma spray gas shroud attachments. It has been found experimentally that the performance of a conventional conical gas shroud is not satisfactory due to the entrainment of the cold air inside the gas shroud. Numerical simulations confirmed this finding. Parameters such as the cone angle and the main gas flow rate can significantly influence the flow pattern inside the nozzle, resulting in air entrainnient and formation of a circulation zone at the exit region. A new design is proposed which can considerably improve the performance of shrouded nozzles. The superior performance of the proposed design has been demonstrated by numerical simulation. The new design is based on a modification of the conical shape by optimizing the profile of the nozzle from a conical shape with a constant angle to a streamlined configuration. The optimized shape was obtained from an analysis of the streamlines of a fixed angle nozzle.  相似文献   

9.
We study a microfluidic dual nozzle for the production of water-in-oil droplet pairs. Droplets are paired by the hydrodynamic coupling of two nozzles over a wide range of aqueous and oil flow rates provided that they are larger than the channel dimensions. The droplet production frequencies and volumes are related to the flow rates through a single, experimentally determined power-law. The data are in good agreement with a model based on a geometrical decomposition of the dual nozzle leading to a general equation of droplet frequencies as a function of the various flow rates.  相似文献   

10.
Kawamura S  Lin CH  Imasaka T 《Talanta》1994,41(11):1933-1936
A high-temperature pulsed slit nozzle, consisting of a circular pulsed nozzle and an interface to convert a circular flow into a slit flow has been constructed. The absorption spectrum is measured by scanning the wavelength of the monochromator equipped with a xenon arc lamp and by detecting the transmitted light through a jet with a photomultiplier. A rotationally cooled spectrum is clearly observed for aniline only when a long slit nozzle is employed. The absorptivity increases proportionally to the slit length at least up to 6 cm. The time for recording a spectrum is 3.5 min, which is reduced to several seconds by transmitting a white light through a jet and by measuring the spectrum with an optical multichannel analyzer. The detection limit is estimated to a partial vapor pressure of 0.4 torr for aniline. The present system can be conveniently used in routine analysis, because of a wide spectral coverage of the lamp source.  相似文献   

11.
A pulsed nozzle source has been installed in the electron diffraction unit at the University of Michigan. The pulsed mode of operation is found to offer several important advantages in the investigation of clusters generated in nozzle flow. These advantages, including the feasibility of operating without a skimmer, are discussed. Design features and characteristic results are briefly outlined.  相似文献   

12.
通过CFD模拟了灰熔聚流化床气化炉,考察了操作条件包括中心管氧气量、分布板水蒸气量以及操作压力对流化床气化炉的气相浓度分布的影响。剖析了不同操作条件对化学反应的影响,解释了其对气化炉产气组成的作用原理。  相似文献   

13.
The formation and kinetics of large vapourized-material cluster beams (large size metal clusters) are discussed. The clusters are formed by injecting the vapour of solid state materials into a high vacuum region through a nozzle of a heated crucible. The conditions under which metal clusters form are analysed using nucleation theory. Computer simulation by combining the nucleation and flow equations has also been made. The results show that the theory can be useful in predicting qualitative dependences of metal cluster formation on operation conditions. Several experimental results are also presented, which support the finding that a large size metal cluster is formed by homogeneous nucleation and growth. The advantageous characteristics of ionized cluster beam for thin film formation are also discussed.  相似文献   

14.
Series of photographs of the sample flow pattern in the flow cell with a stationary as well as a rotating disk electrode (RDE) were taken with a motor-driven camera. With the stationary electrode, the flow pattern in the cell was mushroom-like. Rotating the electrode generated a secondary fluid motion in the flow cell which manifested itself as vertical circulation of the solution present in the flow cell. A qualitative hydrodynamic explanation of the observed flow patterns is given. Peak broadening effects induced by the RDE in the flow cell were observed only at very fast rotation speeds and high nozzle heights. The response surface of the amperometric detector flow cell with the RDE as a function of the rotation speed and the nozzle height was measured by applying the detector in combination with high-performance liquid chromatography, flow injection analysis and continuous flow analysis. Model curve-fitting calculations indicate that the flow pattern in the flow cell can be laminar or turbulent, depending on the exact cell geometry, rotation speed and nozzle height.  相似文献   

15.
When double emulsion droplets flow through a tapered nozzle, the droplets may break up and cause the core to be released. We model the system on the basis of the capillary instability and show that a droplet will not break up when the tilt angle of the nozzle is larger than 9°. For smaller tilt angles, whether the droplet breaks up also depends on the diameter ratio of the core of the droplet to the orifice of the nozzle. We verified this mechanism by experiments. The ideas are useful for the design of nozzles not only to break droplets for controlled release but also to prevent the droplet from rupturing in applications requiring the reinjection of an emulsion.  相似文献   

16.
This study conducts an experimental study concerning the improvement of nozzle/diffuser micropump design using some novel no-moving-part valves. A total of three micropumps, including two enhancement structures having two-fin or obstacle structure and one conventional micro nozzle/diffuser design, are made and tested in this study. It is found that dramatic increase of the pressure drops across the designed micro nozzles/diffusers are seen when the obstacle or fin structure is added. The resultant maximum flow rates are 47.07 mm3/s and 53.39 mm3/s, respectively, for the conventional micro nozzle/diffuser and the added two-fin structure in micro nozzle/diffuser operated at a frequency of 400 Hz. Yet the mass flow rate for two-fin design surpasses that of conventional one when the frequency is below 425 Hz but the trend is reversed with a further increase of frequency. This is because the maximum efficiency ratio improvement for added two-fin is appreciably higher than the other design at a lower operating frequency. In the meantime, despite the efficiency ratio of the obstacle structure also reveals a similar trend as that of two-fin design, its significant pressure drop (flow resistance) had offset its superiority at low operating frequency, thereby leading to a lesser flow rate throughout the test range.  相似文献   

17.
Nanoparticle formation using a plasma expansion process   总被引:2,自引:0,他引:2  
We describe a process in which nanosize particles with u narrow size distribution are generated by expanding a thermal plasma carrying vapor-phase precursors through a nozzle. The plasma temperature and velocity profiles are characterized by enthalpy probe measurements. by calorimetric energy balances. and by a model of the nozzle flow. Aerosol samples are extracted from the flow downstream of the nozzle by means of a capillary probe interfaced to a two-stage ejection diluter. The diluted aerosol is directed to a scanning electrical mobility spectrometer (SEMS) which provides on-line size distributions down to particle diameters of 4 nmt. We have generated silicon, carbon, and silicon carbide particles with number mean diameters of about 10 not or less, and we have obtained some correlations between the product and the operating conditions. Inspection of the size distributions obtained in the experiments, together with the modeling results, suggests that under our conditions silicon carbide formation is initiated by nucleation of extremely small silicon particles from supersaturated silicon vapor, followed by chemical reactions at the particle surfaces involving carbon-containing species from the gas phase.  相似文献   

18.
A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31–52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.  相似文献   

19.
The performance of a new gas shroud nozzle attachment for plasma spraying was tested experimentally using particle diagnostics, flow visualization, and coating characterization techniques. A nozzle attachment with curvilinear inner walls was tested and compared with a commercially available conical nozzle. Particle temperatures were measured with a high-speed ratio pyrometer and particle velocities were measured with an intensified camera and a two-laser illumination system. Flow visualization was performed by seeding the surrounding air with smoke. Particle temperatures at the spraying distance were 300 K higher with the curvilinear insert. The plasma jet was narrower but the particle velocity distribution at the spraying distance was unchanged. Higher temperatures and improved particle melting with the curvilinear insert resulted in a reduction in coating porosity (from 7.0 to 7.2 to 4.5–5.1%) and an increase in coating adhesion strength (from 27.2 to 42 MPa). Shrouding as injected through a circular slot around the nozzle exit was also seen to provide better protection than gas injected with the standard sixteen-port configuration.  相似文献   

20.
Orientational alignment in a dilute dispersion of kaolinite particles has been investigated in a flow pattern that combines both shear and elongational stress, namely flow at a jet created by a 2 mm diameter nozzle inserted in a 6 mm diameter pipe. Spatially-resolved X-ray diffraction with synchrotron radiation permits detailed maps of the alignment to be deduced and compared with fluid mechanics calculations of the flow. The angular distribution of diffracted intensity from a given position in the pipe provides information about the orientation distribution of the particles. This is quantified and presented in terms of order parameters. The cone-shaped nozzle provides a jet of liquid giving a high degree of alignment of the particles that is uniform along lines across the conical section and constant in the small straight-sided region at the exit of the nozzle. The vortex motion that arises from the flow with a modest Reynolds number could be determined as well as the tendency for some particles to align with their large faces perpendicular to the overall flow direction at the flat surface of the nozzle outlet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号