首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel laser ablation and ionization time-of-flight mass spectrometer has been used for direct elemental analysis of alloys. The system was incorporated with an ion guide cooling cell to reduce the kinetic energy distribution for the purpose of better resolution. Parametric studies have been conducted on the system with respect to the buffer gas pressure and the distance from sample to the nozzle to obtain the maximal signal intensities. In order to obtain satisfactory relative sensitivity coefficients (RSC) for different elements, the influence of the laser irradiance, nozzle voltage, rf frequency and voltage of the hexapole were also investigated. Under the optimized conditions, the RSC of different elements were available for direct semi-quantitative analysis. The mass resolving power (FWHM) of the spectrometer was approximately 7000 (m/Δm) and the limit of detection (LOD) was 10− 6 g/g.  相似文献   

2.
Biochemical processes rely on elaborate networks containing thousands of compounds participating in thousands of reaction. Rapid turnover of diverse metabolites and lipids in an organism is an essential part of homeostasis. It affects energy production and storage, two important processes utilized in bioengineering. Conventional approaches to simultaneously quantify a large number of turnover rates in biological systems are currently not feasible. Here we show that pulse-chase analysis followed by laser ablation electrospray ionization mass spectrometry (LAESI-MS) enable the simultaneous and rapid determination of metabolic turnover rates. The incorporation of ion mobility separation (IMS) allowed an additional dimension of analysis, i.e., the detection and identification of isotopologs based on their collision cross sections. We demonstrated these capabilities by determining metabolite, lipid, and peptide turnover in the photosynthetic green algae, Chlamydomonas reinhardtii, in the presence of 15N-labeled ammonium chloride as the main nitrogen source. Following the reversal of isotope patterns in the chase phase by LAESI-IMS-MS revealed the turnover rates and half-lives for biochemical species with a wide range of natural concentrations, e.g., chlorophyll metabolites, lipids, and peptides. For example, the half-lives of lyso-DGTS(16:0) and DGTS(18:3/16:0), t1/2 = 43.6 ± 4.5 h and 47.6 ± 2.2 h, respectively, provided insight into lipid synthesis and degradation in this organism. Within the same experiment, half-lives for chlorophyll a, t1/2 = 24.1 ± 2.2 h, and a 2.8 kDa peptide, t1/2 = 10.4 ± 3.6 h, were also determined.  相似文献   

3.
Three different approaches to laser ionization mass spectrometric analysis of aromatic compounds in water samples are described and their performances are compared. Whereas the first two methods are based on direct laser desorption and subsequent laser ionization of either frozen or adsorbed samples in a time-of-flight mass analyzer, the third performs laser ionization in a quadrupole ion-trap into which the sample is transferred from a GC injector via a short piece of capillary tubing. For the laser-desorption method a detection limit in the 100 µg L–1 range was determined for fluorene in frozen samples. The easier to handle analysis of adsorbed samples yielded sensitivities which were lower by about two orders of magnitude. As both direct techniques do not reach the sensitivity required for ultra trace analysis in water a preconcentration step in form of solid-phase microextraction was added before measurement using the laser ionization quadrupole ion-trap mass spectrometer. Sensitivity in the desired ng L–1 range was easily achieved.  相似文献   

4.
The detection of anabolic androgenic steroids (AAS) is one of the most important topics in doping control analysis. Gas chromatography coupled to (tandem) mass spectrometry (GC–MS(/MS)) with electron ionization and liquid chromatography coupled to tandem mass spectrometry have been traditionally applied for this purpose. However, both approaches still have important limitations, and, therefore, detection of all AAS is currently afforded by the combination of these strategies. Alternative ionization techniques can minimize these drawbacks and help in the implementation of a single method for the detection of AAS. In the present work, a new atmospheric pressure chemical ionization (APCI) source commercialized for gas chromatography coupled to a quadrupole time‐of‐flight analyzer has been tested to evaluate the ionization of 60 model AAS. Underivatized and trimethylsylil (TMS)‐derivatized compounds have been investigated. The use of GC–APCI–MS allowed for the ionization of all AAS assayed irrespective of their structure. The presence of water in the source as modifier promoted the formation of protonated molecules ([M+H]+), becoming the base peak of the spectrum for the majority of studied compounds. Under these conditions, [M+H]+, [M+H‐H2O]+ and [M+H‐2·H2O]+ for underivatized AAS and [M+H]+, [M+H‐TMSOH]+ and [M+H‐2·TMSOH]+ for TMS‐derivatized AAS were observed as main ions in the spectra. The formed ions preserve the intact steroid skeleton, and, therefore, they might be used as specific precursors in MS/MS‐based methods. Additionally, a relationship between the relative abundance of these ions and the AAS structure has been established. This relationship might be useful in the structural elucidation of unknown metabolites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Laser desorption ionization (LDI) mass spectra have been obtained for the photolysis products of tri-9-anthrylborane (TAB) in the solvents toluene, cyclohexene, and tetrahydrofuran; and for the solid triarylboranes: TAB, trimesitylborane (TMB), and tri-(2,6-dimethylphenyl)borane (TXyB). The major single solution photolysis product of TAB is 9,9′-dianthryl. Other products are rationalized in terms of an anthrylborylene intermediate (AnthB:). LDI mass spectrometry of the triarylboranes yields molecular ions in good abundance, providing a simple and selective method of characterization. Fragmentation patterns in some cases are interpreted in terms of photochemical reactions prior to ionization.  相似文献   

6.
7.
Mass spectrometry using a laser ionization source has played a significant role in elemental analysis. Three types of techniques are widely used: high irradiance laser ionization mass spectrometry is capable of rapid determination of elements in solids; single particle mass spectrometry is a powerful tool for single particle characterization; and resonance ionization mass spectrometry is applied for isotope ratio measurements with high sensitivity and selectivity. In this review, the main features of the laser ablation process and plasma characterization by mass spectrometry are summarized. Applications of these three techniques for elemental analysis are discussed.  相似文献   

8.
张冰  张飞华  方黎  张福义  林淼 《物理化学学报》1994,10(12):1059-1061
金属离子与有机分予的气相反应是近年来气相化学研究的热声、并已成为金属有机化学的一个重要领域[‘-‘].目前,离子回旋共振*;二次离子质谱门和离子束技术问等方法已被广泛应用于金属离子与有机分子的气相反应研究,并已取得许多优秀的结果.在本文中,我们使用一种非常简单的方法,即激光解离固体金属产生的金属离子与流动的有机分子气体反应的方法,并使用简单的飞行时间质谱仪来研究金属离子与直链烷烃分子的气相反应.1实验所有的实验都是在配有飞行时间质谱仪的真空腔内进行.一个长4m-m,内径2。l的石英玻璃管道平行放置于电…  相似文献   

9.
10.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an emerging technique for the determination of the molecular weight of biomolecules and their non-covalent complexes without fragmentation. One problem with this technique is the use of excess amounts of matrices, which may produce intense fragment ions and/or clusters at low mass ranges between 1 and 800 Da. These fragments lead to interference, especially concerning the signals of small target molecules. Here, a simple, reusable, and quite inexpensive approach was demonstrated to improve the effectiveness of laser desorption/ionization mass spectrometry (LDI-MS) analysis, especially for small molecules, without using matrix molecules. In this study, substrates with controllable morphologies and thicknesses were developed based on the self-assembly of silane molecules on silicon surfaces using N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) and octadecyltrichlorosilane (OTS) molecules. Prepared substrates with nano-overlayers were successfully used in the analysis of different types of small target molecules, namely acrivastine, l-histidine, l-valine, l-phenylalanine, l-arginine, l-methionine and angiotensin I. Our substrates exhibited clear peaks almost without fragmentation for all target molecules, suggesting that these surfaces provide a number of important advantages for LDI-MS analysis, such as ease of preparation, costs, reusability, robustness, easy handling and preventing fragmentation.  相似文献   

11.
A method for the determination of polymer additives like antioxidants, UV absorbers and processing stabilizers using liquid chromatography (LC) coupled with atmospheric pressure photoionization mass spectrometry (APPI-MS) is presented. Ion source parameters were optimized regarding temperatures, gas flow rates, and voltages applied. Detection limits were determined using APPI with or without dopant and were compared with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). Differences between APPI, ESI and APCI are pointed out and the effect of the dopant toluene and acetone is discussed. The optimized method yielded detection limits between 0.001 mg L−1 and 0.022 mg L−1 for 15 different analytes. Linear calibration plots could be obtained for all solutes over a wide concentration range showing satisfying repeatability with standard deviations of peak areas between 3.4% and 7.6%. The results indicate that the developed method can be regarded as suitable for the quantitative determination of polymer additives even at low concentration levels.  相似文献   

12.
13.
With a coating of gold nanoparticles (AuNPs), over-the-counter (OTC) drugs and Chinese herbal medicine granules in KBr pellets could be analyzed by Fourier Transform Infra-red (FT-IR) spectroscopy and Surface-assisted Laser Desorption/Ionization mass spectrometry (SALDI-MS). FT-IR spectroscopy allows fast detection of major active ingredient (e.g., acetaminophen) in OTC drugs in KBr pellets. Upon coating a thin layer of AuNPs on the KBr pellet, minor active ingredients (e.g., noscapine and loratadine) in OTC drugs, which were not revealed by FT-IR, could be detected unambiguously using AuNPs-assisted LDI-MS. Moreover, phytochemical markers of Coptidis Rhizoma (i.e. berberine, palmatine and coptisine) could be quantified in the concentrated Chinese medicine (CCM) granules by the SALDI-MS using standard addition method. The quantitative results matched with those determined by high-performance liquid chromatography with ultraviolet detection. Being strongly absorbing in UV yet transparent to IR, AuNPs successfully bridged FT-IR and SALDI-MS for direct analysis of active ingredients in the same solid sample. FT-IR allowed the fast analysis of major active ingredient in drugs, while SALDI-MS allowed the detection of minor active ingredient in the presence of excipient, and also quantitation of phytochemicals in herbal granules.  相似文献   

14.
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.  相似文献   

15.
The paper describes the application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the isotopic analysis of individual uranium-oxide particles. The procedure developed is suitable for the accurate measurement of 234U, 235U, 236U and 238U isotopes in single actinide particles with lateral dimensions down to 10 μm. The 235U/238U isotope ratios can be obtained with a precision of a few percent relative standard deviation using a single collector ICP-MS instrument. The precision could be improved by the use of slow ablation and by taking several LA-ICP-MS replicate spectra on the same particle investigated. For the minor isotopes use of higher mass resolution (R = 4000) was necessary in some cases to avoid spectral interferences. The technique developed offers a rapid and accurate possibility for the isotopic composition determination of uranium-containing individual particles in environmental and safeguards samples.  相似文献   

16.
Matrix-assisted ionization vacuum (MAIV) is a novel ionization technique that generates multiply charged ions in vacuum without the use of laser ablation or high voltage. MAIV can be achieved in intermediate-vacuum and high-vacuum matrix-assisted laser desorption/ionization (MALDI) sources and electrospray ionization (ESI) sources without instrument modification. Herein, we adapt MAIV onto the MALDI-LTQ-Orbitrap XL platform for biomolecule analysis. As an attractive alternative to MALDI for in solution and in situ analysis of biomolecules, MAIV coupling to high resolution and accurate mass (HRAM) MS instrument has successfully expanded the mass detection range and improved the fragmentation efficiency due to the generation of multiply charged ions. Additionally, the softness of MAIV enables potential application in labile post-translational modification (PTM) analysis. In this study, proteins as large as 18.7 kDa were detected with up to 18 charges; intact peptides with labile PTM were well preserved during the ionization process and characterized MS/MS; peptides and proteins in complex tissue samples were detected and identified both in liquid extracts and in situ. Moreover, we demonstrated that this method facilitates MS/MS analysis with improved fragmentation efficiency compared to MALDI-MS/MS.  相似文献   

17.
Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature.  相似文献   

18.
In this work new high performance liquid chromatographic methods in combination with mass spectrometry have been developed for the quantitation of hindered amine light stabilizers (HALS) which are commonly used as monomeric and oligomeric species for stabilization of plastic materials. These analytes are difficult to separate under traditional reversed phase conditions. In the present study new silica-based pH stable reversed phases that had become available recently were investigated for HALS analysis, and turned out to be well suited employing mobile phases at a pH of around 11 adjusted by addition of ammonia. Detection was done by mass spectrometry employing both time-of-flight and triple quadrupole mass analyzers. The performance of electrospray ionization (ESI) as well as atmospheric pressure photoionization (APPI) was investigated and compared. Despite the high pH of the mobile phase, an excellent ionization could be obtained in the positive ion mode. ESI provided slightly lower limits of quantitation (on average a factor of 2) in comparison with APPI. The method allowed the quantitation of a range of different HALS down to 0.05–0.005% (depending on the HALS) in polymeric materials. Sample preparation consisted in dissolving the sample in toluene and precipitation of the polymer with acetone. The procedure can be routinely applied to aging tests of plastic materials in order to predict the lifetime of plastic components.  相似文献   

19.
报道了新型空气动力辅助离子化(AFAI)装置与不同类型商业化质量分析器的快速接口技术. 在前期研究基础上, 进一步提高了AFAI系统的抽气流速, 在更宽范围内考察了流速对质谱灵敏度的影响; 对AFAI离子源进行模块化设计和制作, 重点解决快速接口问题, 通过更换接口板可实现其与不同厂家、 不同类型质量分析器的兼容及联用, 尤其可以与具有气帘接口的质量分析器联用. 本离子源装置结合不同质量分析器可以进行全扫描、 子离子扫描、 母离子扫描、 中性丢失扫描和高分辨等多种类型质谱分析, 而且AFAI可在电喷雾(ESI)、 解析电喷雾(DESI)和大气压化学电离(APCI)等多种离子化模式下工作, 从而实现对不同性质化合物的快速检测. 本研究结果进一步提高了AFAI离子化技术的功能, 拓展了其应用范围.  相似文献   

20.
A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15 s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC–MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122 ng L−1 while the limit of quantification ranged from 90 to 370 ng L−1. Calibration curves in the wastewater matrix showed good linearity (R2 ≥ 0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号