首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL−1 Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.  相似文献   

2.
A simple method is described to distinguish between As species that react with sodium tetrahydroborate (III) to form AsH3 and the naturally occurring As species that are unreactive. Results for this rudimentary or “first order” speciation scheme are reported for biological tissue, aquatic plant material, urine and natural water samples. Biological tissue and aquatic plant samples were briefly solubilized in a mixture of 50% nitric acid, no sample preparation was required for the urine or natural water samples. Organoarsenic species which do not react with sodium borohydride under acidic conditions such as arsenobetaine, arsenocholine and tetramethylarsenic, are converted to As(V) by on-line photo-oxidation or microwave heating in a mixture of 0.5 M NaOH and 0.05 M K2S2O8. The sample is subsequently acidified, reduced with sodium borohydride and the generated arsine is trapped in a heated graphite furnace prior to atomization. The superior detection limit (0.14 ng) of the trapping technique permits the dilution of most types of samples, minimizing or eliminating interference effects. Without photolysis or microwave heating a combined result for As(III), As(V), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) is obtained. Results are reported for the first order speciation of As in a suite of certified reference materials (CRMs) including National Research Council (NRC) biological tissues and natural water samples, Community Bureau of Reference (BCR) aquatic plant materials and the National Institute of Standards and Technology (NIST) SRM 267ON urine sample. The determination of a non-hydride forming As fraction in untreated urine and natural water certified reference materials (CRMs) has revealed a species of As previously undetected in NRC seawater CRMs.  相似文献   

3.
Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows ‘in-atomizer trapping’ of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO2, H2 and H2O, the amount of lab wastes is minimized and a green methodology is achieved.  相似文献   

4.
The combination of more efficient flow-through electrochemical mercury cold vapor generation with its in-situ trapping in a graphite tube atomizer is described. This coupled technique has been optimized to attain the maximum sensitivity for Hg determination and to minimize the limits of detection and determination. A laboratory constructed thin-layer flow-through cell with a platinum cathode served as the cold vapor generator. Various cathode arrangements with different active surface areas were tested. Automated sampling equipment for the graphite atomizer with an untreated fused silica capillary was used for the introduction of the mercury vapor. The inner surface of the graphite tube was covered with a gold foil placed against the sampling hole.  相似文献   

5.
A theoretical analysis is made of the effect of analytical line broadening and of non-absorbable radiation in the light source on the shape of concentration curves in Zeeman graphite furnace atomic absorption spectrometry. These results have been used in a systematic study of the effect of spectrometer slit width and hollow-cathode lamp (HCL) current on linearization of calibration graphs for 11 elements: Ag, Au, Bi, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Sb. The effectiveness of linearization throughout the analytical range covered was estimated experimentally on series of 25–30 solutions. Three solutions in each series were used as standards for constructing the calibration graph, the others serving to evaluate the linearization effectiveness. Increasing the slit width and decreasing the HCL current compared to the standard measurement conditions have permitted us to reach a sufficiently high effectiveness of linearization for all the elements studied, with the exception of Ni. The maximum deviation of experimental points from the linear graph under optimum conditions does not exceed 6%. The effect of the Δ parameter used in the computational algorithm on linearization effectiveness is investigated.  相似文献   

6.
石墨炉原子吸收法测定石脑油中微量砷   总被引:2,自引:0,他引:2  
试样用四氢呋喃(THF)有机溶剂稀释,以硝酸镍为基体改进剂,研究采用石墨炉原子吸收法直接进样测定石脑油中的砷量。研究表明,砷量在0~50μg/L范围内线性关系良好,回收率93%~104%。  相似文献   

7.
采用石墨炉原子吸收光谱法测定茶叶中铅,以NH4H2PO4作为基体改进剂,提高了测定的灰化温度,消除了基体干扰.方法简便,快速,准确度高.通过对标准物质的多次测定,结果均在其保证值范围内,相对标准偏差为2.8%.对样品进行加标回收试验,回收率为96%~105%,方法检出限为0.12μg/L.  相似文献   

8.
利用高灵敏的石墨炉原子吸收法,在V(HCl):V(HNO3):V(H2O)=5:1:94混合酸介质中测定苯基丙烯酸酯类化合物中的钯量.已纯化样品钯量的平均值是6.76 μg/g,标准相对偏差是4.8%,平均回收率为99.3%;未纯化样品钯量的平均值是121.2 μg/g,平均相对偏差是5.4%.还讨论酸介质对测定钯吸光度的影响,通过比较找到了合适的酸介质组成.  相似文献   

9.
A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH4OH+0.05% w/v Triton X-100®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO3)2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1−1 Se, corresponding to 30 μg l−1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l−1, with a mean value of 114±22 μg l−1.  相似文献   

10.
A new procedure for the speciation analysis of hydride forming elements using GFAAS as detector is proposed. The separation of the species is performed by HPLC and the eluent flow is merged with HCl and NaBH4 solutions moved by peristaltic pumps controlled by a flow injection apparatus. As the species emerges from the column, its respective hydride is formed and carried through the autosampler capillary to an Ir treated graphite tube pre-heated at 300 °C, where it is trapped. After the hydride collection, the autosampler arm is moved from the tube and atomization takes place. The sequence is repeated for the next emerging species. The feasibility of the system was evaluated for the speciation of As (III) and As (V) in waste water samples. The retention times were previously determined using a more concentrated mixed analytical solution and a quartz tube as atomizer. The analytical curves obtained by the proposed procedure showed similar slopes for both species as well as coefficient of regression better than 0.99. Limits of detection were 0.2 ng/mL for both species, 50 times better then the same assembly using a quartz tube atomizer. In the analysis of certified reference materials the sum of the As (III) and As (V) species concentrations were in close agreement with the arsenic concentration certified for total arsenic.  相似文献   

11.
Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l−1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55–60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg−1 were satisfactory for a routine procedure.  相似文献   

12.
A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L− 1 KBr in 6 mol L− 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L− 1 HCl and 2.5% m/v NaBH4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g− 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.  相似文献   

13.
This work shows the potentiality of As as internal standard to compensate errors from sampling of sparkling drinking water samples in the determination of selenium by graphite furnace atomic absorption spectrometry. The mixture Pd(NO3)2/Mg(NO3)2 was used as chemical modifier. All samples and reference solutions were automatically spiked with 500 μg l−1 As and 0.2% (v/v) HNO3 by the autosampler, eliminating the need for manual dilutions. For 10 μl dispensed sample into the graphite tube, a good correlation (r=0.9996) was obtained between the ratio of analyte absorbance by the internal standard absorbance and the analyte concentrations. The relative standard deviations (R.S.D.) of measurements varied from 0.05 to 2% and from 1.9 to 5% (n=12) with and without internal standardization, respectively. The limit of detection (LD) based on integrated absorbance was 3.0 μg l−1 Se. Recoveries in the 94-109% range for Se spiked samples were obtained. Internal standardization (IS) improved the repeatability of measurements and increased the lifetime of the graphite tube in ca. 15%.  相似文献   

14.
Bendl RF  Madden JT  Regan AL  Fitzgerald N 《Talanta》2006,68(4):1366-1370
A method for the determination of mercury via UV photoreduction has been investigated. Mercury vapor was generated by the reduction of mercury species in an acetic acid solution using UV radiation. Detection of the volatile mercury was accomplished by atomic absorption spectrometry. An optimized system was found to provide a detection limit (defined as the concentration giving a signal equal to three times the standard deviation of the blank) of 2.1 μg L−1 with a precision of 2.9% relative standard deviation (n = 8) for a 500 μg L−1 mercury standard. The effect of various metal ions on the mercury signal was investigated and the method validated with a NRCC certified dogfish liver material (DOLT-3) using the method of standard additions. A reaction pathway is hypothesized for UV photoreduction.  相似文献   

15.
The study was performed to compare the effect of magnesium modifier (magnesium nitrate) with that of other modifiers (palladium nitrate and nickel nitrate) in determination of arsenic, antimony and selenium by atomic absorption spectroscopy with atomization in a graphite tube, with generation of hydrides and in situ preconcentration in a graphite tube. The assumed criterion of a modifier performance was the magnitude of the analytical signal. It was found that in determinations with atomization in a graphite furnace the effects of all these modifiers were comparable, while in those with hydride generation and in situ preconcentration in a graphite tube the magnesium modifier showed poorer performance (25% decrease of the analytical signal). In determinations of arsenic and selenium the analytical signal obtained with magnesium salt as a modifier was comparable with those obtained in the presence of all other modifiers.  相似文献   

16.
Pei Liang  Ehong Zhao  Feng Li 《Talanta》2009,77(5):1854-1857
A new method for the determination of palladium was developed by dispersive liquid-liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry detection. In the proposed approach, diethyldithiocarbamate (DDTC) was used as a chelating agent, and carbon tetrachloride and ethanol were selected as extraction and dispersive solvent. Some factors influencing the extraction efficiency of palladium and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of this method for palladium reached at 156. The detection limit for palladium was 2.4 ng L−1 (3σ), and the relative standard deviation (R.S.D.) was 4.3% (n = 7, c = 1.0 ng mL−1). The method was successfully applied to the determination of trace amount of palladium in water samples.  相似文献   

17.
Yang LL  Zhang DQ 《Talanta》2002,56(6):12-1129
A method has been described for the direct determination of trace levels of germanium by graphite furnace atomic absorption spectrometry (GFAAS) using chemical matrix modification technique. The stabilization and the pyrolysis temperatures for germanium were investigated with various chemical modifiers including palladium, palladium–magnesium, palladium–strontium and palladium–zirconium. The highest pyrolysis temperature and highest integrated absorbance were obtained using palladium–zirconium modifier, and the severe matrix interference from sulfate can be eliminated. The characteristic mass and absolute detection limit (3σ) of germanium were found to be 16 and 12 pg, respectively. The proposed method was applied to the determination of trace levels of germanium in botanical samples with a recovery range of 92–106%. The hydride generation atomic fluorescence spectrometric (HGAFS) method was employed to analyze the samples and the results agree well with those obtained by GFAAS. The contents of germanium in standard reference materials were determined and the results were in good agreement with the reference values.  相似文献   

18.
The determination of trace elements in crude oil is difficult due to the complex nature of the sample and the various different chemical forms in which the metals can occur. The advantage of graphite furnace atomic absorption spectrometry is that only a minimum of sample pretreatment is required. In this work two techniques have been compared to establish a fast and reliable method for lead determination in crude oil. In the first one the crude oil samples were weighed directly onto solid sampling (SS) platforms and introduced into the graphite tube for analysis. In the second one the samples were prepared as oil-in-water emulsions and analyzed in a filter furnace (FF). Twenty μL of a mixture of 0.5 mg L− 1 Pd + 0.3 mg L− 1 Mg + Triton X-100 has been used as the modifier, and calibration against aqueous solutions has been used for both methods. The sensitivity obtained with the FF was more than a factor of two better than that with SS; however, as a larger sample mass could be introduced in the latter case, so that the limits of detection for both techniques were 0.004 mg kg− 1. Seven crude oil samples were analyzed using the two procedures, and all results were in agreement at a 95% confidence level using a paired Student's t-test. For validation purposes, three crude oil samples have been mineralized using an open-vessel acid digestion, and the results were in agreement with those found with direct sampling and with emulsion sampling using FF according to ANOVA test. Both methods are simple, fast and reliable, being appropriated for routine analysis; however, the direct method using SS technology should be preferred because of its simplicity, speed and commercial availability.  相似文献   

19.
A novel on-line coupled capillary electrophoresis (CE) cold vapor generation (CVG) with electrothermal quartz tube furnace atomic absorption spectrometry (EQTF-AAS) system for mercury speciation has been developed. The mercury species (inorganic mercury and methylmercury) were completely separated by CE in a 80 cm length × 100 μm i.d. fused-silica capillary at 20 kV and using a buffer of 100 mM boric acid and 10% (v/v) methanol (pH 8.30). The effects of the inner diameter of quartz tube, the acidity of HCl, the NaBH4 concentration and N2 flow rate on Hg signal intensity were investigated. Speciation of mercury was highlighted using CE-CVG-EQTF-AAS. The detection limits of methylmercury and mercury were 0.035 and 0.027 μg mL−1, respectively. The precisions (RSDs) of peak height for six replicate injections of a mixture of 10 μg mL−1 (as Hg) were better than 4%. The interface was used for speciation analysis of mercury in dry goldfish muscle.  相似文献   

20.
The use of a sampling technique is described for the identification of metals from inorganic pigments in paint. The sampling technique involves gently contacting a cotton swab with the painted surface to physically remove a minute quantity (∼1-2 μg) of pigment. The amount of material removed from the painted surface is invisible to the unaided eye and does not cause any visible effect to the painted surface. The cotton swab was then placed in a 1.5 ml polystyrene beaker containing HNO3 to extract pigment metals prior to analysis using graphite furnace atomic absorption spectrometry (GFAAS). GFAAS is well suited for identifying pigment metals since it requires small samples and many pigments consist of main group elements (e.g. Al) as well as transition metals (e.g. Zn, Fe and Cd). Using Cd (cadmium red) as the test element, the reproducibility of sampling a paint surface with the cotton swab was approximately 13% in either a water or oil medium. To test the feasibility of cotton sampling for pigment identification, samples were obtained from paintings (watercolour and oil) of a local collection. Raman spectra provided complementary information to the GFAAS, which together are essential for positive identification of some pigments. For example, GFAAS indicated the presence of Cu, but the Raman spectra positively identified the modern copper pigment phthalocyanine green (Cu(C32Cl16N8). Both Raman spectroscopy and GFAAS were useful for identifying ZnO as a white pigment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号