首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Dysfunction of the corticolimbic circuitry has been highlighted in social anxiety disorder (SAD) during social stimuli. However, few studies have investigated functional connectivity in SAD during the resting state, which may improve our understanding of SAD pathophysiology. The aim of this study was to investigate whether whole-brain functional connectivity might be aberrant in SAD patients, and if so, whether these changes are related to the measured clinical severity. Seventeen SAD patients and 19 healthy controls participated in resting-state functional magnetic resonance imaging. The brain was first divided into 90 paired brain regions and functional connectivity was then estimated by temporal correlation between each of these regions. Furthermore, connections that were significantly disrupted in SAD patients were correlated with clinical severity measured using the Liebowitz Social Anxiety Scale. Compared with healthy controls, SAD patients showed decreased positive connections within the frontal lobe and decreased negative connections between the frontal and occipital lobes. In particular, the weaker negative connections between the frontal lobe, which mainly involved the right median prefrontal cortex, and the occipital lobe had a significant positive correlation with the severity of SAD symptoms. The results support the hypothesis that some abnormalities of functional connectivity exist in SAD patients, which relate to the frontal cortex and occipital cortex. In addition, decreased functional connectivity between the frontal and occipital lobes and within the frontal lobe might be related to abnormal information processing and reflect disturbed neural organization resulting in defective social cognition, which could represent an early imaging biomarker for SAD.  相似文献   

2.
Motor imagery is an experimental paradigm implemented in cognitive neuroscience and cognitive psychology. To investigate the asymmetry of the strength of cortical functional activity due to different single-hand motor imageries, functional magnetic resonance imaging (fMRI) data from right handed normal subjects were recorded and analyzed during both left-hand and right-hand motor imagery processes. Then the average power of blood oxygenation level-dependent (BOLD) signals in temporal domain was calculated using the developed tool that combines Welch power spectrum and the integral of power spectrum approach of BOLD signal changes during motor imagery. Power change analysis results indicated that cortical activity exhibited a stronger power in the precentral gyrus and medial frontal gyrus with left-hand motor imagery tasks compared with that from right-hand motor imagery tasks. These observations suggest that right handed normal subjects mobilize more cortical nerve cells for left-hand motor imagery. Our findings also suggest that the approach based on power differences of BOLD signals is a suitable quantitative analysis tool for quantification of asymmetry of brain activity intensity during motor imagery tasks.  相似文献   

3.
Recently, there is an increasing interest in the study of the role of brain dysfunction in the pathogenesis of symptoms of functional dyspepsia (FD). More specifically, abnormal brain activities in patients with FD during the resting state have been proven by several positron emission tomography (PET) studies. Resting-state functional magnetic resonance imaging (fMRI) is also a valuable tool in investigating spontaneous brain activity abnormalities in pathological conditions. In the present study, we examined the amplitude of low-frequency fluctuations (ALFF) and fractional (f)ALFF changes in patients with FD by using fMRI. Twenty-nine patients with FD and sixteen healthy controls participated in this study. Between-group differences in ALFF/fALFF were examined using a permutation-based nonparametric test after accounting for the gender and age effects. The results revealed a significant between-group difference in fALFF but not in ALFF in multiple brain regions including the right insula, brainstem and cerebellum. Seed-based resting-state functional connectivity analysis revealed that FD patients have increased correlations between the right cerebellum and multiple brain regions including the bilateral brainstem, bilateral cerebellum, bilateral thalamus, left para-/hippocampus, left pallidum and left putamen. Furthermore, fLAFF values in the right insula were positively correlated with the severity of the disease. These findings have provided further evidence of spontaneous brain activity abnormalities in FD patients which might contribute to our understanding of the pathophysiology of the disease.  相似文献   

4.
Functional connectivity analyses of fMRI data can provide a wealth of information on the brain functional organization and have been widely applied to the study of the human brain. More recently, these methods have been extended to preclinical species, thus providing a powerful translational tool. Here, we review methods and findings of functional connectivity studies in the rat. More specifically, we focus on correlation analysis of pharmacological MRI (phMRI) responses, an approach that has enabled mapping the patterns of connectivity underlying major neurotransmitter systems in vivo. We also review the use of novel statistical approaches based on a network representation of the functional connectivity and their application to the study of the rat brain functional architecture.  相似文献   

5.
Previous neuroimaging studies have primarily focused on the neural activities involving the acute effects of acupuncture. Considering that acupuncture can induce long-lasting effects, several researchers have begun to pay attention to the sustained effects of acupuncture on the resting brain. Most of these researchers adopted functional connectivity analysis based on one or a few preselected brain regions and demonstrated various function-guided brain networks underlying the specific effect of acupuncture. Few have investigated how these brain networks interacted at the whole-brain level. In this study, we sought to investigate the functional correlations throughout the entire brain following acupuncture at acupoint ST36 (ACUP) in comparison with acupuncture at nearby nonacupoint (SHAM). We divided the whole brain into 90 regions and constructed functional brain network for each condition. Then we examined the network hubs and identified statistically significant differences in functional correlations between the two conditions. Following ACUP, but not SHAM, the limbic/paralimbic regions such as the amygdala, hippocampus and anterior cingulate gyrus emerged as network hubs. For direct comparisons, increased correlations for ACUP compared to SHAM were primarily related with the limbic/paralimbic and subcortical regions such as the insula, amygdala, anterior cingulate gyrus, and thalamus, whereas decreased correlations were mainly related with the sensory and frontal cortex. The heterogeneous modulation patterns between the two conditions may relate to the functional specific modulatory effects of acupuncture. The preliminary findings may help us to better understand the long-lasting effects of acupuncture on the entire resting brain, as well as the neurophysiological mechanisms underlying acupuncture.  相似文献   

6.
The increased risk for the elderly with mild cognitive impairment (MCI) to progress to Alzheimer's disease makes it an appropriate condition for investigation. While the use of acupuncture as a complementary therapeutic method for treating MCI is popular in certain parts of the world, the underlying mechanism is still elusive. We sought to investigate the acupuncture effects on the functional connectivity throughout the entire brain in MCI patients compared to healthy controls (HC). The functional magnetic resonance imaging experiment was performed with two different paradigms, namely, deep acupuncture (DA) and superficial acupuncture (SA), at acupoint KI3. We first identified regions showing abnormal functional connectivity in the MCI group compared to HC during the resting state and subsequently tested whether these regions could be modulated by acupuncture. Then, we made the comparison of MCI vs. HC to test whether there were any specific modulatory patterns in the poststimulus resting brain between the two groups. Finally, we made the comparisons of DA vs. SA in each group to test the effect of acupuncture with different needling depths. We found the temporal regions (hippocampus, thalamus, fusiform gyrus) showing abnormal functional connectivity during the resting state. These regions are implicated in memory encoding and retrieving. Furthermore, we found significant changes in functional connectivity related with the abnormal regions in MCI patients following acupuncture. Compared to HC, the correlations related with the temporal regions were enhanced in the poststimulus resting brain in MCI patients. Compared to SA, significantly increased correlations related with the temporal regions were found for the DA condition. The enhanced correlations in the memory-related brain regions following acupuncture may be related to the purported therapeutically beneficial effects of acupuncture for the treatment of MCI. The heterogeneous modulatory patterns between DA and SA may suggest that deep muscle insertion of acupuncture is necessary to achieve the appreciable clinical effect.  相似文献   

7.
The blood oxygen level dependency (BOLD) contrast is a useful tool for functional neuroimaging based on the hemodynamic response to neuronal activation. We observed different hemodynamic responses in the BOLD signal between the primary sensorimotor area (SM1) and the supplementary motor area (SMA) in the sequential finger movement task. In the SMA, a stronger initial overshoot and a post-stimulus overshoot were observed. It was hypothesized from the time course analysis that the stronger initial overshoot reflected the activation of the SMA for motor control programming in the initial phase. Although the post-stimulus overshoot may be partially explained by cerebral blood flow (CBF) cerebral blood volume (CBV) uncoupling, its mechanism remained unknown. In the SM1, only the initial overshoot was observed and the level of BOLD signal was almost constant after the initial overshoot during the task period. These observations suggested that the BOLD signal is characterized by both CBF-CBV uncoupling and the neuronal activation characteristics in each region.  相似文献   

8.
Resting-state functional magnetic resonance imaging (RS-fMRI) is a technique used to investigate the spontaneous correlations of blood-oxygen-level-dependent signals across different regions of the brain. Using functional connectivity tools, it is possible to investigate a specific RS-fMRI network, referred to as "default-mode" (DM) network, that involves cortical regions deactivated in fMRI experiments with cognitive tasks. Previous works have reported a significant effect of aging on DM regions activity. Independent component analysis (ICA) is often used for generating spatially distributed DM functional connectivity patterns from RS-fMRI data without the need for a reference region. This aspect and the relatively easy setup of an RS-fMRI experiment even in clinical trials have boosted the combined use of RS-fMRI and ICA-based DM analysis for noninvasive research of brain disorders. In this work, we considered different strategies for combining ICA results from individual-level and population-level analyses and used them to evaluate and predict the effect of aging on the DM component. Using RS-fMRI data from 20 normal subjects and a previously developed group-level ICA methodology, we generated group DM maps and showed that the overall ICA-DM connectivity is negatively correlated with age. A negative correlation of the ICA voxel weights with age existed in all DM regions at a variable degree. As an alternative approach, we generated a distributed DM spatial template and evaluated the correlation of each individual DM component fit to this template with age. Using a "leave-one-out" procedure, we discuss the importance of removing the bias from the DM template-generation process.  相似文献   

9.
Most modern techniques for functional magnetic resonance imaging (fMRI) rely on blood-oxygen-level-dependent (BOLD) contrast as the basic principle for detecting neuronal activation. However, the measured BOLD effect depends on a transfer function related to neurophysiological changes accompanying electrical neural activation. The spatial accuracy and extension of the region of interest are determined by vascular effect, which introduces incertitude on real neuronal activation maps. Our efforts have been directed towards the development of a new methodology that is capable of combining morphological, vascular and functional information; obtaining new insight regarding foci of activation; and distinguishing the nature of activation on a pixel-by-pixel basis. Six healthy volunteers were studied in a parametric auditory functional experiment at 3 T; activation maps were overlaid on a high-resolution brain venography obtained through a novel technique. The BOLD signal intensities of vascular and nonvascular activated voxels were analyzed and compared: it was shown that nonvascular active voxels have lower values for signal peak (P<10(-7)) and area (P<10(-8)) with respect to vascular voxels. The analysis showed how venous blood influenced the measured BOLD signals, supplying a technique to filter possible venous artifacts that potentially can lead to misinterpretation of fMRI results. This methodology, although validated in the auditory cortex activation, maintains a general applicability to any cortical fMRI study, as the basic concepts on which it relies on are not limited to this cortical region. The results obtained in this study can represent the basis for new methodologies and tools that are capable of adding further characterization to the BOLD signal properties.  相似文献   

10.
躯体症状障碍(somatic symptom disorder,SSD)是一种常见的医学疾病,致病原因涉及生物学、心理学及社会因素.目前关于SSD的神经机制知之甚少.本研究通过静息态功能磁共振成像(functional magnetic resonance imaging,fMRI),结合低频振幅(amplitudes of low-frequency fluctuation,ALFF)和局部一致性(regional homogeneity,ReHo)分析探究45位SSD患者和43位健康对照自发性脑活动特征的区别.结果发现:与对照组相比,SSD患者右侧扣带回中部的ReHo值显著升高,而右侧楔前叶、左侧颞下回延伸到左侧颞中回和左侧海马旁回、右侧脑桥的ReHo值显著降低.同时,SSD患者扣带回中部延伸至左侧额中回、右侧脑岛延伸至右侧额下回、左侧额中回延伸至左侧前扣带回的ALFF值均显著升高.这些脑区的脑功能与自我加工、情绪处理、身体知觉等有关,与SSD发病机制有重要联系.  相似文献   

11.
The practicability of using Overhauser enhancement of saline in interventional MRI was investigated. Saline was used as a means of marking the path taken by a fluid-filled cavity, similar to that formed by a needle, catheter, or cannula during interventional MRI procedures. A prototype device was designed and constructed for saturation and propulsion of 0.6 ml of doped liquid. The pertinent Overhauser parameters, such as the obtainable enhancement factor, were measured. Signal enhancement in excess of 10 was demonstrated in practice by acquiring images showing an enhancement of fluid in a catheter tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号